26–27 Feb 2026
University of Graz
Europe/Vienna timezone

Almost All Products of Projections Converge

26 Feb 2026, 14:35
20m
SR 11.33

SR 11.33

Contributed Talk Analysis

Speaker

Prof. Eva Kopecka (Universität Innsbruck)

Description

Let $C_1, \dots, C_K$ be closed, convex and quasi-symmetric subsets of a Hilbert space $H$ with a nonempty intersection $C=\bigcap_1^K C_j$.
A sequence of indices $\alpha\in \{1,\dots,K\}^{\mathbb N}$ and $x_0\in H$ generate the sequence of projections
$$ x_{n+1}=P_{\alpha(n)}x_n, \qquad n=0,1,2,\dots; $$ here $P_{\alpha(n)}$ denotes the nearest point projection onto the convex set $C_{\alpha(n)}$. We show that for almost all sequences $\alpha$ of indices the generated sequence of projections converges to a point in $C$.

Affiliation

Institut für Mathematik
Universität Innsbruck

Author

Prof. Eva Kopecka (Universität Innsbruck)

Presentation materials

There are no materials yet.