Speaker
Jeet Shannigrahi
(University of British Columbia, Vancouver)
Description
We generalize the Momentum Average (MA) approximation to compute the finite temperature spectral functions of the Holstein polaron in a one-dimensional system. We validate our MA results in 1D against available numerical data from density matrix renormalization group (DMRG) and the finite-temperature Lanczos method, establishing the accuracy of the MA results which are obtained at a substantially lower computational cost. We use MA to to characterize the temperature range over which a coherent quasiparticle (the polaron) exists and we study the evolution with temperature of its effective mass and lifetime.
Authors
Jeet Shannigrahi
(University of British Columbia, Vancouver)
Mona Berciu
(University of British Columbia)