Phase cameras (PCs) - developed at Nikhef and recently installed at Advanced Virgo - are capable of probing wavefront amplitude and phase in 2D for any frequency. This allows for monitoring the frequencies used to generate the error signals to lock the interferometer. Additionally, the PC has been used in the past to inform on wavefront distortions due to thermal defects in the mirrors....
We are developing a Cryogenic Superconducting Inertial Sensor (CSIS) to be employed in the forthcoming Einstein Telescope (ET). The designed displacement sensitivity for this device is a few fm/√Hz at 0.5 Hz, which is 3 orders of magnitude more sensitive than the state-of-the-art. The sensor will open pathways to monitor low-vibration motions of cryocoolers applied to the penultimate stage of...
We present new constraints on the merging rates and abundance of planetary-mass and asteroid-mass inspiraling primordial black hole binaries using limits on continuous waves (quasi-monochromatic, quasi-infinte duration signals) derived from from all-sky searches for isolated compact objects in the first half of the third observing run (O3a) of LIGO/Virgo. We derive these rates in a...
I will report the findings of 2104.14231. We computed the all-length scales unequal-time strain power spectrum and the energy density parameter of gravitational waves generated by various scaling sources, such as Cosmic Strings, showing that these exhibit a fine structure.
Rotating black holes in general relativity are notoriously simple objects. They can be fully fixed by measuring a single dominant (complex) characteristic frequency. Having determined this 'quasinormal mode' (QNM) frequency for the endstate of a binary merger, any additional information, from earlier binary dynamics or other QNMs, can serve as a test of our understanding of general relativity...