6–10 May 2024
US/Eastern timezone

Semiclassical geometrodynamics of homogeneous cosmology

7 May 2024, 16:30
15m
FAU FTL Room 312

FAU FTL Room 312

Cosmology, Black Holes, and other applications/phenomenology Cosmology

Speaker

Muhammad Muzammil (University of New Brunswick)

Description

We present the classical-quantum (CQ) hybrid dynamics of homogeneous cosmology from a Hamiltonian perspective where the classical gravitational phase space variables and matter state evolve self-consistently with full backreaction. We compare numerically the classical and CQ dynamics for isotropic and anisotropic models, including quantum scalar-field induced corrections to the Kasner exponents. Results indicate that full backreaction effects leave traces at late times in cosmological evolution; in particular, the scalar energy density at late times provides a potential contribution to dark energy. We also show that the CQ equations admit exact static solutions for the isotropic, and the anisotropic Bianchi IX universes with the scalar field in a stationary state. We study the classical-quantum (CQ) hybrid dynamics of homogeneous cosmology from a Hamiltonian perspective where the classical gravitational phase space variables and matter state evolve self-consistently with full backreaction. We compare numerically the classical and CQ dynamics for isotropic and anisotropic models, including quantum scalar-field induced corrections to the Kasner exponents. Our results indicate that full backreaction effects leave traces at late times in cosmological evolution; in particular, the scalar energy density at late times provides a potential contribution to dark energy. We also show that the CQ equations admit exact static solutions for the isotropic, and the anisotropic Bianchi IX universes with the scalar field in a stationary state.

Author

Muhammad Muzammil (University of New Brunswick)

Presentation materials

There are no materials yet.