LEMING: Towards measuring the gravitational acceleration g of Muonium

PLATAN 2024 - Paul Wegmann - 13.06.2024

A. Antognini, E. Dourassova, K. Kirch, D. Goeldi, <u>A. Soter*</u>, D. Taqqu, R. Waddy, <u>P.</u> Wegmann[†], V. Vojtech, J. Zhang Institue for Particle Physics and Astrophysics, ETH Zurich, 8093 Zurich, Switzerland

M. Bartkowiak, K. Jefimovs, A. Knecht, G. Lospalluto, R. Scheuermann Paul Scherrer Institue, 5232 Villigen-PSI, Switzerland

F. Wauters Johannes Gutenberg University of Mainz, 55122 Mainz, Germany

> *asoter@phys.ethz.ch <u>pwegmann@phys.ethz.ch</u>

Standard Model

- Why three generations? •
- Mass hierarchy •
- Many free parameters •
- Baryon Asymmetry? \bullet
- What about Dark Matter? •
- Gravity? •

. . .

Laser (Precision) Spectroscopy with Muonium

- Purely leptonic exotic atom, dominated by QED effects
- Measurement of hyperfine structure (MuSEUM at JPARC) and **1S-2S transition** (MuMASS at PSI)
 - Determine fundamental constants (m $_{\mu}$, μ_{μ} , R $_{\infty}$)
 - Test of bound-state QED & symmetries (
 - Close interplay with other precision experiments, e.g. muon g-2

$$E(1s - 2s) \simeq \frac{3}{4} q_e q_\mu R_\infty \left(1 - \frac{m_e}{m_\mu}\right) +$$

Standard Model and Beyond

LEMING: LEptons in Muonium INteracting with Gravity

- fundamental parameters of SM; no masses generated by QCD
- second generation (anti)fermions of the SM - only possible probe of this sector

LEMING: LEptons in Muonium INteracting with Gravity

Free fall of Mu

Test of the Weak Equivalence Principle by measuring the coupling of gravity to:

- fundamental parameters of SM; no masses generated by QCD
- second generation (anti)fermions of the SM - only possible probe of this sector
- Validity of WEP in higher generations?
- Possibility to test flavour dependent new interactions

How to measure g for Muonium?

Lifetime of Muonium limited by lifetime of μ^+ : $\tau = 2.2 \,\mu s$

The need for a novel Muonium source

PLATAN 2024 - Paul Wegmann - 13.06.2024

Cold Muonium Beam using Superfluid Helium

- In previous measurements at PSI established 4 previously unknown physics process in SFHe:
- (1) Mu stop and recombination with high enough efficiency
- (2) Thermalization below the roton gap, $v_L \approx 60 \text{ m/s}$
- (3) Ballistic diffusion (no collisions), $\tau_d \approx 1 \ \mu s \ ^*$ to surface
- (4) Ejection in the surface normal, due to the large positive chemical potential

Surface ejection

- large chemical potential: $\frac{E}{k_B} \sim 270 \text{ K}$
- Mu are ejected from bulk SFHe with $v_1 \approx 6300 \text{ m/s}$ M. Saarela and E. Krotscheck, JLTP 90, 415 (1993)

Scattering of phonons

 'small impurity' with effective mass

$m_{Mu} \approx m_{He}$

- At 0.2 K phonon density is small:
 - $n_{ph} = 2 \cdot 10^{19} T^3 / \text{cm}^3 \approx 10^{16} / \text{cm}^3$
- unlikely to scatter at phonons:

 $1/\tau_c \propto T^7 \approx 5/s$ Taqqu, Physics Procedia 17 (2011) 216-223, Kirch & Khaw: Int. J. of Mod. Phys. 30, (2014) Soter & Knecht, SciPost Physics Proceedings 031 (2021)

*other atoms don't do this. Clue for exception: antiprotonic helium in SFHe

<u>A. Soter et al., Nature 603, 411–415 (2022)</u>

Characterisation of Muonium beam from Superfluid Helium

How to measure g for Muonium?

How to measure g for Muonium?

Beamtime 2023 - Horizontal Muonium Beam

PLATAN 2024 - Paul Wegmann - 13.06.2024

Necessary for the interferometer Hugely influencing the yield (decay

Horizontal Muonium Beam - Concept

PLATAN 2024 - Paul Wegmann - 13.06.2024

SFHe suspended by the capillary force, between support bars behind the first Si3N4 membrane

-15

Horizontal Muonium Beam - Microfluidic Target in Action

Capillary effect (with acetone)

PLATAN 2024 - Paul Wegmann - 13.06.2024

Drying out

-16

Horizontal Muonium Beam - Measurements

- Clear emission of Mu from the microfluidic target
- Stopped muon to vacuum muonium conversion efficiency seems ca. 1/2 of the free surface emission
- Effected by background, further studies are needed

joing Developments - Cryogenic detectors

ΡM

ble

nic e^- Detector

hallenging due to low hergy of electron and resence of superfluid elium

kite nanocrystals

Br shows remarkable scintillation properties at cryogenic eratures [V. B. Mykhaylyk et al., Nature 10, 8601 (2020)]

- CsPbBr has higher light yield than EJ-204 at cryogenic temperatures perovskite
- Low voltage onset, 3+ kV

Positron Detectors

- Upgrade trackers
- Maximize solid angle coverage

Cryogenic Silicon Strip Detectors

Ongoing Developments - Interferometer

Scanning, stabilization, calibration

- Monitoring alignment with Fabry-Perot (~10 pm)
- Vertical scanning
 (~pm) with piezo
 actuators
- Calibration sources:X-rays and UV laser

Fabrication of mono-crystalline Si raft and free standing Si₃N₄ grating separately

Outlook on Spectroscopy

Possible improvements on **Precision Spectroscopy**

- We are producing the **same amount of Mu** compared to room • temperature sources but in a small, directed beam
- Potential collaboration with MuMASS for 1S-2S spectroscopy •
- **Increased statistics** > 1 OM (compared to previous MuMASS) • source)
- reduced atom velocity *v* ٠

٠

•

Reduced transit-time broadening $\sim 1/3$:

 $\Delta
u pprox 0.4 \stackrel{v}{---}$, with w the waist size

Reduced second order Doppler shift $\sim 1/10$:

$$\Delta\nu\approx-\,\nu_0\frac{\nu^2}{2{\rm c}^2}$$
 , with $\,\nu_0=2.46\cdot10^{15}\,{\rm Hz}$

correction via lineshape modelling if velocity distribution • known

Thank you for your Attention!

0	1
2	