If your signal is too small, well, make it 10 million times larger

Photo by former PhD student Tim Hucko

Gerald Gwinner University of Manitoba

Jos signaalisi on liian pieni, tee siitä 10 miljoonaa kertaa suurempi

Jyväskylä

Mean daily minimum °C (°F)	-10.9 (12.4)	–11.5 (11.3)	-8.1 (17.4)	-2.4 (27.7)	2.8 (37.0)	8.2 (46.8)	11.2 (52.2)	9.5 (49.1)	5.1 (41.2)	0.6 (33.1)	-3.2 (26.2)	-7.5 (18.5)	-0.5 (31.1)
The	K			1				-	A STATE			-	
Mean daily minimum °C (°F)	-13.5 (7.7)	-13.3 (8.1)	–9.1 (15.6)	-3.4 (25.9)	2.5 (36.5)	8.5 (47.3)	11.8 (53.2)	9.6 (49.3)	4.9 (40.8)	-1.3 (29.7)	-6.7 (19.9)	-10.6 (12.9)	-1.7 (28.9)

Rovaniemi

Winnipeg

Photo by former PhD student Tim Hucko

Gerald Gwinner University of Manitoba

Atomic Parity Violation

Z-boson exchange between atomic electrons and the quarks in the nucleus

Nuclear spin independent

Nuclear spin dependent

NSI: coherent over all nucleons (quarks):

 $H_{\rm pv}$ mixes electronic s & p states: $\langle n's | H_{\rm pv} | np \rangle \propto Z^3$ Signature: drive $s \to s$ electric dipole (E1) transition

Bouchiat & Bouchiat 1974, 1975

Let's build a NSI APV Hamiltonian for a pointlike nucleus

Fermi constant →generic strength of weak interaction

$$H_{\rm APV}^{\rm NSI} = \frac{G_F}{2\sqrt{2}} \begin{bmatrix} \propto Z^2 \\ \gamma_5 \end{bmatrix} \delta(\mathbf{r}) \quad Q_W^{\propto N}$$

every serious formula needs this

 $\langle ns | \gamma_5 | n'p \rangle$ depends on **details** of electron wavefunctions in nucleus $\propto Z^2$

- highly non-trivial in many-electron systems, requires state-of-art atomic structure theory
- only feasible in hydrogen-like (alkali) systems currently
- Cs (Wood, Boulder, 1997)
- in Fr (Z=87), APV effect is 18x larger

weak interaction has "zero" range \rightarrow electron must be in nucleus

APV $\propto Z^2 N \approx Z^3$ add'l relativistic enh. of for large Z

weak charge of the nucleus \rightarrow how many nucleons + details of their weak interaction with electrons

$$Q_W = 2\left(\kappa_{1p} \, Z + \kappa_{1n} \, N\right)$$

Standard Model:

test!

$$\kappa_{1p} = \frac{1}{2} \left(1 - 4 \sin^2 \theta_W \right) \approx 0.024$$

$$\kappa_{1n} = -\frac{1}{2} \Rightarrow Q_W^{APV} \approx N$$

for offline reference

Electroweak tests

- The weak or Weinberg angle θ_W "runs" with momentum transfer
- APV is a unique test at very low momentum transfer

sensitivity to light dark bosons \rightarrow low energy is good for something after all

There is more to it

• Cs APV and Qweak constrain parity violating electron quark couplings together

Remarkable APV reach

Physics sensitivity from contact interaction (LEP2 convention, g²= 4pi)

	precision	$\Delta \sin^2 \overline{\Theta}_{W}(0)$	Λ_{new} (expected)	
APV Cs	0.58 %	0.0019	32.3 TeV	
E158	14 %	0.0013	17.0 TeV	
Qweak I	19 %	0.0030	17.0 TeV	
Qweak final	4.5 %	0.0008	33 TeV	
PVDIS	4.5 %	0.0050	7.6 TeV	
SoLID	0.6 %	0.00057	22 TeV	
MOLLER	2.3 %	0.00026	39 TeV	
P2	2.0 %	0.00036	49 TeV	
PVES 12C	0.3 %	0.0007	49 TeV	

from Frank Maas' CIPANP 2018 talk

comparison to e.g. direct searches complicated

strong motivation to make progress on the APV front

Good news: An outstanding experiment in Cs (Wood, 1996) Bad news: The Cs experiment has been towering

A facility for experiments with francium

- Fr has not stable isotopes \rightarrow need to work at a radioactive beam facility
- Boulder Cs experiment used a massive atomic beam: 1013 s-1 cm-2
- No existing RIB facility can do this, not even close
- Key figure: Cs had 1010 APV excitations per second
- Would only need $\approx 10^6 10^7$ Fr atoms stored in a **neutral atom trap** to yield similar signal \rightarrow can do this at TRIUMF/ISAC

Vancouver

Pacific Spirit Forest

TRIUMF

Atomic parity violation in Fr

France and the Rutherford atom are very similar:

Gigantic thing in the middle and nothing worth mentioning around it

The Francium Trapping Facility at TRIUMF/ISAC part 1: online capture trap

Part 2: Science chamber

D1 isotope shifts in a string of light francium isotopes

Collister et al., Phys Rev A 90, 052502 (2014) and A 92, 019902(E) (2015)

Benchmarks state-of-the-art atomic theory in Fr by Safranova and others.

> for offline reference

Hyperfine anomaly in light francium isotopes

Zhang et al., Phys Rev Lett 115, 042501 (2015)

Reconfirms that in terms of nuclear structure, 208-213 are "good" nuclei for APNC/ anapoles

> for offline reference

Francium 7p_{3/2} photoionization — Collister et al. 2017, Can J Phys

Photo-ionization cross-section of the 7p3/2 state in francium

Stark interference APV measurement in Fr

- observe interference between the Stark-induced and PV amplitudes ($f_{eff} \approx 10^{-16.5}$)
- IF term changes sign under parity transformations (e.g. electric field reversals)
 - modulation of decay fluorescence (in Fr $\approx 10^{-4}$) \rightarrow extract weak charge of Fr
- M1 always present \rightarrow study and understand M1 and $E1_{stark}$ in detail

7s-8s spectroscopy: Apparatus

gets worse on \approx 1yr time scale

 \rightarrow oxygen depletion in UHV?

- E_{stark} : transparent electric field plates compatible with MOT
- M1: impossible with a power buildup cavity, very challenging
 - inside UHV chamber on ISAC beamline, not optics table
 - achieved **4000×** enhancement
 - higher intensities lead to photo-ionization of Fr
 - MOT beams and PBC @ 506 nm cannot be on at the same time \rightarrow photo-ionization
 - interleave MOT and PBC every $\approx 400 \ \mu s$
 - miraculously (to me) PBC able to maintain lock!
 - → 40 kW/cm² of 506 nm light available for spectroscopy

7s-8s spectroscopy: pure MI

7s-8s spectroscopy: E1 Stark amplitude and hyperfine pumping

• we obtain a consistent saturation parameter

• Hyperfine pumping saturates the quadratic rise of E1_{Stark}

20

7s-8s spectroscopy: EI Stark amplitude and hyperfine pumping

 also observe consistent saturation broadening 21

- exponential decay of atom cloud skews resonances
- not normalized to atom #

- final result:
- can put good constraints on the relativistic M1 matrix element
- good agreement with theory
 - better than in Cs!

TABLE I. A comparison of the relativistic component for the Fr $7s \rightarrow 8s$ reduced M1 matrix element between theory and experimental values.

References	$M_{ m rel}^{ m RME}(imes 10^{-5} \mu_{ m B}/{ m c})$
Theory	
Savukov et al.[1], 1999	113
Safronova $et al.$ [13], 2017	No Breit: 139.9
	Breit: 137.4
Experimental	
This work	$152(12)_{\mathrm{expt}}(1)_{\mathrm{theo}}$

7s-8s: Boosting the signal

- photon detection efficiency 1/4000 (PMT 10% QE, solid angle, filters, ...)
- for APV need to take this to near-perfect efficiency
- → "burst fluorescence" using D2 cycling transition

 ~ 4000 burst photons from single atoms 7s-8s excitation

Signal progress 2018-23

Where does Fr APV stand?

- In the following consider **only** statistical limitation
- MI now produces up to 10^{6} Hz of counting rate from maybe 200,000 atoms.
- For $E_{\text{Stark}} E_{\text{pnc}}$ would choose around 300 400 V/cm \rightarrow 10 MHz
- APV asymmetry $\approx 10^{-4}$
 - need 10^8 counts to see APV \rightarrow takes around 10 sec
 - need 10^{12} counts for a 1% APV measurement \rightarrow takes 1 day
 - need 10^{14} counts for a 0.1% APV measurement $\rightarrow 100$ days
 - trap IOx more atoms $\rightarrow 10$ days
- systematics and overhead make this significantly worse, so maybe 100 days? That still sounds alright (as long as I don't do the nights shifts)

What's in wait for me?

Stage	Yb	Fr	my age	any youngster interested to come to TRILIME and take
Start project	1995	2018		this project over?
M1 measurement	2001	2021-23		
APV observed	2008	2026 2030 as p	olan 60 64 er Yb	
APV, BSM sensitivity	2018	2029 2040	62 74	

Outlook and credits

- light intensity and detection now at "APV level"
- next step: optically pump 7s atoms into specific $|F, m_F = \pm F\rangle$ states
- to consider APV, need probably another 10x to 50x more atoms trapped
- U Manitoba/TRIUMF M1 team
 - T. Hucko¹, A. Sharma¹, I. Halilovic¹, T. Morshed¹, L. Xie², M. Kalita², G. Gwinner¹
- TRIUMF: L. Croquette⁴, J. Behr, A. Gorelov, A. Teigelhöfer, S. Malbrunot-Ettenauer, J. Lassen, R. Li
- U Maryland: L. Orozco
- some-time beamtime participation: S. Aubin (William & Mary), E. Gomez (San Luis Potosí)
- FrPNC alumni: M. Kossin¹, DeHart¹, R. Collister¹, J. Zhang³, M. Tandecki² M. Pearson², K Shiells¹

Funding: NSERC, NRC/TRIUMF, U Manitoba, U Maryland

student PD/Res.Assoc ¹ Manitoba ² TRIUMF ³ Maryland ⁴ McGill

