## **Electronic Bridge schemes in <sup>229</sup>Th doped LiCAF**



#### Tobias Kirschbaum<sup>1</sup>, Martin Pimon<sup>2</sup>, and Adriana Pálffy<sup>1</sup>

<sup>1</sup>Julius-Maximilians-Universität *Würzburg, Germany* <sup>2</sup>Technische Universität Wien, *Austria* 





Thor, the Scandinavian god of thunder inspired the name of Thorium (1828)



#### $\rightarrow$ Ideal candidate for a nuclear clock with outstanding properties

[1] L. v. d. Wense *et al.*, Nature **533**, 47-53 (2016)

**WÜRZBURG** 

[2] J. Tiedau et al., Phys. Rev. Lett. 132, 182501 (2024)





[3] E. Peik et al., Quantum Sci. Technol. 6, 034002 (2021)









[3] E. Peik et al., Quantum Sci. Technol. 6, 034002 (2021)





[3] E. Peik et al., Quantum Sci. Technol. 6, 034002 (2021)





[3] E. Peik et al., Quantum Sci. Technol. 6, 034002 (2021)





[3] E. Peik et al., Quantum Sci. Technol. 6, 034002 (2021)

![](_page_8_Picture_0.jpeg)

![](_page_8_Picture_1.jpeg)

1) Nuclear clock approaches

### 2) <sup>229</sup>Th in large band gap crystals

3) Electronic Bridge schemes in <sup>229</sup>Th:LiCAF

![](_page_8_Picture_5.jpeg)

![](_page_8_Picture_6.jpeg)

![](_page_8_Picture_7.jpeg)

![](_page_9_Picture_0.jpeg)

![](_page_9_Picture_1.jpeg)

### 1) Nuclear clock approaches

## 2) <sup>229</sup>Th in large band gap crystals

### 3) Electronic Bridge schemes in <sup>229</sup>Th:LiCAF

![](_page_9_Picture_5.jpeg)

![](_page_9_Picture_6.jpeg)

![](_page_9_Figure_7.jpeg)

![](_page_10_Picture_0.jpeg)

# **Coupling to atomic shells**

![](_page_10_Figure_2.jpeg)

**However**: IC decay of <sup>229</sup>Th has led to the first direct evidence of the isomer in 2016 [1]

Recently: Observation of radiative decay [5], direct laser excitation followed soon after [2]

![](_page_11_Picture_0.jpeg)

# **Coupling to atomic shells**

![](_page_11_Figure_2.jpeg)

However: IC decay of <sup>229</sup>Th has led to the first direct evidence of the isomer in 2016 [1]

Recently: Observation of radiative decay [5], direct laser excitation followed soon after [2]

![](_page_12_Picture_0.jpeg)

# Main approaches for a nuclear clock

- 1.) Single ion nuclear clock [6]
  - Trapped ion
  - Similar to atomic clocks

![](_page_12_Picture_5.jpeg)

2.) Solid state nuclear clock [7]

- Novel approach
- <sup>229</sup>Th nuclei doped in transparent crystal

![](_page_12_Picture_9.jpeg)

![](_page_13_Picture_0.jpeg)

# Main approaches for a nuclear clock

- 1.) Single ion nuclear clock [6]
  - Trapped ion
  - Similar to atomic clocks

![](_page_13_Picture_5.jpeg)

- 2.) Solid state nuclear clock [7]
- Novel approach
- <sup>229</sup>Th nuclei doped in transparent crystal

![](_page_13_Picture_9.jpeg)

![](_page_14_Picture_0.jpeg)

# Pros and cons of the solid state approach

**Large band gap crystals** ( $\Delta_g > 8.4 \text{ eV}$ ) are an ideal inert host for <sup>229</sup>Th [7]:

- Transparent +  $^{229}$ Th<sup>q+</sup> (q  $\geq$  1)
- Logistical benefits with high doping densities up to  $\approx 10^{18}$  cm<sup>-3</sup>
- More nuclei can be interrogated at the same time  $\rightarrow$  Better clock stability

#### However:

- Background radioactivity
- Systematic crystal effects
- Rabi and Ramsey interrogation schemes are **not** applicable due to crystal lattice effects
  - $\rightarrow$  Clock operation via counting of nuclear fluorescence photons

![](_page_14_Figure_12.jpeg)

![](_page_15_Picture_0.jpeg)

![](_page_15_Picture_1.jpeg)

1) Nuclear clock approaches

### 2) <sup>229</sup>Th in large band gap crystals

3) Electronic Bridge schemes in <sup>229</sup>Th:LiCAF

![](_page_15_Picture_5.jpeg)

![](_page_15_Picture_6.jpeg)

![](_page_15_Picture_7.jpeg)

# Doping <sup>229</sup>Th nuclei in large band gap crystals

![](_page_16_Figure_1.jpeg)

- Possible host materials: LiCAF (LiCaAlF<sub>6</sub>) or CaF<sub>2</sub>
- Ab initio Density Functional Theory (DFT) simulations of such systems predict the formation of defect states localized around the <sup>229</sup>Th nucleus close to 8 eV [8, 9]
- $\rightarrow$  Above or below?
  - $\Gamma_d \gg \Gamma_\gamma$

#### Nuisance?

No, these states can be used for isomer excitation via Electronic Bridge (EB)

[8] P. Dessovic *et al.*, J. Phys. Condens. Matter **26**, 105402 (2014) [9] M. Pimon, PhD Thesis, TU Wien (2021)

![](_page_17_Picture_0.jpeg)

# <sup>229</sup>Th:CaF<sub>2</sub> versus <sup>229</sup>Th:LiCAF

![](_page_17_Figure_2.jpeg)

- $\Delta_g \sim 12 \text{ eV}$  bare CaF<sub>2</sub>
- <sup>229</sup>Th replaces Ca ion → 2 Fluorine interstitials for charge compensation
- Formation of 8 defect states

![](_page_17_Picture_6.jpeg)

- $\Delta_g \sim 12.7 \text{ eV}$  bare LiCAF
- Several preferred doping orientations + charge compensation mechanisms [10]
- Here: <sup>229</sup>Th replaces Al ion with neighboring Li vacancy
- Formation of 12 defect states

![](_page_18_Picture_0.jpeg)

![](_page_18_Picture_1.jpeg)

1) Nuclear clock approaches

### 2) <sup>229</sup>Th in large band gap crystals

3) Electronic Bridge schemes in <sup>229</sup>Th:LiCAF

![](_page_18_Picture_5.jpeg)

![](_page_18_Picture_6.jpeg)

![](_page_18_Picture_7.jpeg)

#### Julius-Maximilians-UNIVERSITÄT WÜRZBURG

# **Electronic Bridge schemes**

![](_page_19_Figure_2.jpeg)

#### Spontaneous decay

[11] B. S. Nickerson *et al.*, Phys. Rev. Lett. **125**, 032501 (2020)

Spontaneous excitation

[12] B. S. Nickerson et al., Phys. Rev. A 103, 053120 (2021)

![](_page_20_Picture_0.jpeg)

### Some technical details

Using the example of spontaneous excitation [11,12]:

$$\Gamma_{\rm eb} \propto \sum_{m,g} \omega_p^3 \cdot |\langle m, o | \widetilde{\boldsymbol{D}}_{E1} | g, d \rangle|^2$$
 Bridge photon of E1 multipolarity

Matrix element (3rd order perturbation theory):

$$\langle m, o | \widetilde{\boldsymbol{D}}_{E1} | g, d \rangle = \sum_{\lambda K, q} (-1)^q \left[ \sum_n \frac{\langle o | \boldsymbol{D}_{E1} | n \rangle \langle n | T_{\lambda K, q} | d \rangle}{\omega_{dn} - \omega_{mg}} + \sum_k \frac{\langle o | T_{\lambda K, q} | k \rangle \langle k | \boldsymbol{D}_{E1} | d \rangle}{\omega_{ok} + \omega_{mg}} \right] \langle m | M_{\lambda K, -q} | g \rangle$$

- $D_{E1}$ : Photon emission via electronic transition
- $T_{\lambda K,q}$ : Coulomb ( $\lambda K = E2$ )/current-current ( $\lambda K = M1$ ) interaction between electron and nucleus
- $M_{\lambda K,-q}$ : Nuclear transition via Coulomb or current-current interaction
- Intermediate electronic states forming the virtual states

 $|m\rangle$ 

Conduction band

![](_page_21_Figure_0.jpeg)

[11] B. S. Nickerson *et al.*, Phys. Rev. Lett. **125**, 032501 (2020)

[12] B. S. Nickerson et al., Phys. Rev. A 103, 053120 (2021)

![](_page_22_Picture_0.jpeg)

# **Electronic Bridge spectrum**

Defect state involved for EB schemes:  $|d_5\rangle$  with predicted energy  $E_d = 11.54 \text{ eV}$  ( $E_1 < \cdots < E_{12}$ )

 $\rightarrow$  Vary energy of  $|d_5\rangle$  and other  $|d_i\rangle$  around isomer energy by subtracting same constant from each state energy

![](_page_22_Figure_4.jpeg)

- Resonance: Alignment in
  energy of one of the defect
  states with the nuclear isomer
- Strong excitation when real
  electronic states are in the
  vicinity of the nuclear isomer

<sup>11</sup> 

# Advantage towards direct Photoexcitation?

![](_page_23_Figure_1.jpeg)

UNIVERSITÄT

WÜRZBURG

[14] J. Thielkling *et al.*, New. J. Phys. **25**, 083026 (2023)

![](_page_24_Picture_0.jpeg)

 Orders of magnitude stronger excitation compared to direct laser excitation Γ<sup>nuc</sup><sub>ex</sub> [13]

UNIVERSITÄT

WÜRZBURG

- UV: Assisting laser in UV range (e.g. tuneable UV lasers from TOPTICA)
- VUV: Assisting laser in optical/IR range
- However: Exact energetic position is crucial for the enhancement

![](_page_24_Figure_5.jpeg)

![](_page_25_Picture_0.jpeg)

### **Quenching schemes**

![](_page_25_Figure_2.jpeg)

[12] B. S. Nickerson *et al.*, Phys. Rev. A **103**, 053120 (2021)

![](_page_26_Picture_0.jpeg)

Consider quenching schemes in the UV spectral range and the VUV spectral range [13]:  $\beta = \Gamma_{qu}/\Gamma_{\gamma}$ 

![](_page_26_Figure_2.jpeg)

![](_page_26_Figure_3.jpeg)

| UV (Stimulation): | $\beta \sim O(10^2)$ |
|-------------------|----------------------|
|-------------------|----------------------|

**VUV (Absorption):**  $\beta \ge O(10^3)$ 

**Quenching scheme** can lead to a controlled decay

15

# Quenching and influence on nuclear clock performance

 Remember: Within the solid state approach, flourescence photons are counted within a fixed time interval

UNIVERSITÄT

WÜRZBURG

- Quenching: More fluorescence
  photons in detection window
  - $\rightarrow$  Better short term stability

![](_page_27_Figure_4.jpeg)

Clock fractional instability as a function of excitation rate

16

# **Conclusion & Outlook**

![](_page_28_Picture_1.jpeg)

 <sup>229</sup>Th provides a unique chance to develop a nuclear clock with increased accuracy and potentially investigate new physics

- Electronic bridge schemes via crystal defects in <sup>229</sup>Th:LiCAF
- Depending on the energetic position of the defect state, much stronger nuclear (de)excitation occurs
- Outlook: Experimental verification of defect states + influence of different <sup>229</sup>Th:LiCAF structures

![](_page_28_Figure_6.jpeg)

![](_page_29_Picture_0.jpeg)

![](_page_29_Picture_1.jpeg)

#### University of Würzburg

![](_page_29_Picture_3.jpeg)

### Technical University of Vienna

![](_page_29_Picture_5.jpeg)

#### Martin Pimon

![](_page_29_Picture_7.jpeg)

#### Thorsten Schumm

![](_page_29_Picture_9.jpeg)

![](_page_30_Picture_0.jpeg)

## Thank you for your attention!