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• 𝐸 ~ 8.4 eV [2]

• 𝑡𝛾 ~ 𝑂(103) s

• Δ𝐸/𝐸 ~ 10−20

What is special about 229Th (Z=90)?
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229Th: Lowest excitation energy amongst all nuclei!

ȁ ۧ𝑚

ȁ ۧ𝑔

→ Ideal candidate for a nuclear clock with outstanding properties
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Thor, the Scandinavian god of thunder inspired the name of Thorium (1828)
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229Th nuclear clock
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Improving satellite navigation

Are fundamental constants 

(e.g. 𝛼, ΛQCD) really constant?

Challenges: Uncertainty on 

transition energy, lack of 

narrowband VUV lasers 
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Coupling to atomic shells

However: IC decay of 229Th has led to the first direct evidence of the isomer in 2016 [1]

In neutral 229Th internal conversion (IC) is the preferred decay channel: 
ΓIC

Γ𝛾
∼ 𝑂(108)

[1] L. v. d. Wense et al., Nature 533, 47-53 (2016) [2] J. Tiedau et al., Phys. Rev. Lett. 132, 182501 (2024) [5] S. Kraemer et al., Nature 617, 706-710 (2023)

Recently: Observation of radiative decay [5], direct laser excitation followed soon after [2]
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IC energetically 

forbidden for 𝒒 ≥ 𝟏

Recently: Observation of radiative decay [5], direct laser excitation followed soon after [2]

3



4

1.) Single ion nuclear clock [6]

[6] E. Peik and C. Tamm, EPL 61, 181 (2003) [7] G. A. Kazakov et al., New J. Phys. 14, 083019 (2012)

2.) Solid state nuclear clock [7]

Main approaches for a nuclear clock

• Novel approach

• 229Th nuclei doped in transparent crystal

• Trapped ion

• Similar to atomic clocks
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Pros and cons of the solid state approach
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Large band gap crystals (∆𝑔> 8.4 eV) are an ideal inert host for 229Th [7]:

[7] G. A. Kazakov et al., New J. Phys. 14, 083019 (2012)

• Transparent + 229Thq+ (q ≥ 1)

• Logistical benefits with high doping densities up to ≈ 1018cm-3

• More nuclei can be interrogated at the same time → Better clock stability

However:

• Background radioactivity

• Systematic crystal effects

• Rabi and Ramsey interrogation schemes are not applicable due to crystal 

lattice effects 

     → Clock operation via counting of nuclear fluorescence photons
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2) 229Th in large band gap crystals 
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• Possible host materials: LiCAF (LiCaAlF6) or CaF2

• Ab initio Density Functional Theory (DFT) 

simulations of such systems predict the formation 

of defect states localized around the 229Th 

nucleus close to 8 eV [8, 9]

 → Above or below?

• Γ𝑑 ≫ Γ𝛾

Doping 229Th nuclei in large band gap crystals

[8] P. Dessovic et al., J. Phys. Condens. Matter 26, 105402 (2014) [9] M. Pimon, PhD Thesis, TU Wien (2021)

Nuisance?

No, these states can be used for isomer excitation 

via Electronic Bridge (EB)



229Th:CaF2 versus 229Th:LiCAF 7

• Δ𝑔~ 12 eV bare CaF2

• 229Th replaces Ca ion → 2 Fluorine 

interstitials for charge compensation

• Formation of 8 defect states

• Δ𝑔~ 12.7 eV bare LiCAF

• Several preferred doping orientations + 

charge compensation mechanisms [10]

• Here: 229Th replaces Al ion with 

neighboring Li vacancy

• Formation of 12 defect states

Ca

F

Al

Li

[10] M. Pimon et al., Adv. Theory Simul. 5, 2200185 (2022)
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3) Electronic Bridge schemes in 229Th:LiCAF



Electronic Bridge schemes
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[11, 12]

[11] B. S. Nickerson et al., Phys. Rev. Lett. 125, 032501 (2020) [12] B. S. Nickerson et al., Phys. Rev. A 103, 053120 (2021)



Some technical details

𝑚, 𝑜 ෩𝑫𝐸1 𝑔, 𝑑 = ෍
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Using the example of spontaneous excitation  [11,12]:

Bridge photon of 𝐸1 multipolarity

•  𝑫𝑬𝟏: Photon emission via electronic transition

• 𝑇𝜆𝐾,𝑞: Coulomb (𝜆𝐾 = 𝐸2)/current-current (𝜆𝐾 = 𝑀1) interaction between electron and nucleus

• 𝑀𝜆𝐾,−𝑞: Nuclear transition via Coulomb or current-current interaction

• Intermediate electronic states forming the virtual states

Matrix element (3rd order perturbation theory):

9

[11] B. S. Nickerson et al., Phys. Rev. Lett. 125, 032501 (2020) [12] B. S. Nickerson et al., Phys. Rev. A 103, 053120 (2021)



Driven schemes

[11] B. S. Nickerson et al., Phys. Rev. Lett. 125, 032501 (2020) [12] B. S. Nickerson et al., Phys. Rev. A 103, 053120 (2021)

𝛤driven ∝  𝛤eb

𝐼𝜔

𝐸𝑝
3

10

[11, 12]



Electronic Bridge spectrum

• Resonance: Alignment in 

energy of one of the defect 

states with the nuclear isomer

• Strong excitation when real 

electronic states are in the 

vicinity of the nuclear isomer

Absorption Stimulation

Defect state involved for EB schemes: ȁ ۧ𝑑5 with predicted energy 𝐸𝑑 = 11.54 eV (𝐸1 < ⋯ < 𝐸12)

→ Vary energy of ȁ ۧ𝑑5 and other ȁ ۧ𝑑𝑖 around isomer energy by subtracting same constant from each state energy

11

[13] T. Kirschbaum, M. Pimon et al., in preparation (2024)



[13] T. Kirschbaum, M. Pimon et al., in preparation (2024) [14] J. Thielkling et al., New. J. Phys. 25, 083026 (2023)

Advantage towards direct Photoexcitation?

• With current laser technology [14]: 

𝜞𝐞𝐱
𝐧𝐮𝐜 =  𝟏𝟎−𝟕𝒔−𝟏@ 𝑤 = 100 𝜇m

• Enhancement: 𝛽 = 𝜌𝑑𝛤𝑑/ 𝛤ex
nuc

• For demonstrative purposes [13]: 

Enhancement of nuclear excitation 

via defect state in UV, VUV

12

VUVUV VUVUV



VUVUV

Number examples for nuclear excitation
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𝜷~𝑶 𝟏𝟎𝟓 𝜷 ≥ 𝑶(𝟏𝟎𝟓)

• Orders of magnitude stronger 

excitation compared to direct laser 

excitation 𝛤ex
nuc [13]

• UV: Assisting laser in UV range        

(e.g. tuneable UV lasers from 

TOPTICA)

• VUV: Assisting laser in optical/IR 

range

• However: Exact energetic position is 

crucial for the enhancement

[13] T. Kirschbaum, M. Pimon et al., in preparation (2024)

𝛽 = 𝜌𝑑𝛤𝑑/ 𝛤ex
nuc



Quenching schemes
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[11] B. S. Nickerson et al., Phys. Rev. Lett. 125, 032501 (2020) [12] B. S. Nickerson et al., Phys. Rev. A 103, 053120 (2021)

Quenching: Conversion from 

nuclear excited state population into 

electronic defect population

[11, 12]



Number examples for quenching
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Consider quenching schemes in the UV spectral range and the VUV spectral range [13]: 𝜷 = 𝚪𝐪𝐮/𝚪𝜸

𝛤qu ∝  𝛤eb

𝐼𝜔

𝐸𝑝
3

UV (Stimulation):  𝛽~𝑂(102) 

VUV (Absorption):  𝛽 ≥ 𝑂(103) 

Quenching scheme can lead to a controlled 

decay

[13] T. Kirschbaum, M. Pimon et al., in preparation (2024)



Quenching and influence on nuclear clock performance 
16

For EB in 229Th:CaF2

• Remember: Within the solid 

state approach, flourescence 

photons are counted within a 

fixed time interval

• Quenching: More fluorescence 

photons in detection window    

→ Better short term stability

[12] B. S. Nickerson et al., Phys. Rev. A 103, 053120 (2021)

[12]

Clock fractional instability as a function of excitation rate

With quenching

Without quenching



Conclusion & Outlook
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• 229Th provides a unique chance to develop a nuclear 

clock with increased accuracy and potentially 

investigate new physics

• Electronic bridge schemes via crystal defects in 

229Th:LiCAF

• Depending on the energetic position of the defect state, 

much stronger nuclear (de)excitation occurs

• Outlook: Experimental verification of defect states + 

influence of different 229Th:LiCAF structures
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