

Collinear Laser Spectroscopy on Neutron-Deficient Al Isotopes

Brooke Rickey PhD Candidate in the BECOLA group at FRIB

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics and used resources of the Facility for Rare Isotope Beams (FRIB), which is a DOE Office of Science User Facility, under Award Number DE-SC0000661.

Halo Structure Near the Driplines

- Moving towards the driplines, unique structures occur, and understanding them is important to unveil driving nuclear forces.
 - Distribution beyond the compact core has been observed, including halo phenomena
- Compared to the neutron dripline the location of the proton dripline is more well known

Cross Section: I. Tanihata, PRL 100, 192502 (2008) Charge Radius: W. Nörtershäuser, Phys. Rev. C **84**, 024307 (2011)

- Proton halos are a rare phenomena due to the coulomb barrier and are hard to study due to the low production cross sections, being far from stability
- ²²Al and ²³Al lie near the proton dripline and their ground states have been thought to display proton-halo or skin phenomena

Cross Section: I. Tanihata, et al. PRL 55, 24 (1985) Quadrupole Moment: T. Minamisono, et al. PRL 69, 14 2058 (1992)

Facility for Rare Isotope Beams

9

С

8

В

7

Be

6

Li

10

С

9

В

8

Be

7

Li

na que lo		22	23	24	25	26	27	28	29	30	
to study			Si								
ections				22	23	24	25	26	27	28	29
				AI	AI	Al	AI	Al	AI	Al	AI
19 20			20	21	22	23	24	25	26	27	28
ripline		Mg									
				20	21	22	23	24	25	26	27
				Na							
skin ¹⁷ Ne		17	18	19	20	21	22	23	24	25	26
		Ne									
17			18	19	20	21	22	23	24	25	
F				F	F	F	F	F	F	F	F
13	14	15	16	17	18	19	20	21	22	23	24
0	0	0	0	0	0	0	0	0	0	0	0
12	13	14	15	16	17	18	19	20	21	22	23
Ν	N	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
11	12	13	14	15	16	17	18	19	20	21	22
С	С	С	С	С	С	С	С	С	С	С	С
10	11	12	13	14	15	16	17	18	19	20	21
В	В	В	В	В	В	В	В	В	В	В	В
9	10	11	12	13	14	15	16	17	18	19	20
Be	Be	Be	Be	Be	Be	Be	Ве	Be	Be	Be	Be
8	9	10	11	12	13	14	15	16	17	18	19
Li	Li	Li	Li	Li	Li	Li	Li	Li	Li	Li	Li

- Why ²²Al and ²³Al possibly have a proton-halo phenomena
 - Have a small proton separation energy, seen from systematic trends in the mass region; ~100 and 140.9 keV for ²²Al and ²³Al respectively¹
 - Notable enhancement in its reaction cross section, although with a large uncertainty²
 - Loosely bound single proton attributed to isospin symmetry breaking interactions when compared to its mirror pair which does not display a halo structure³

(1) W. Huang, et al. Chinese Physics C 45, 030002 (2021).; (2) Cali, X. Z. et al. PRC 65(2), 246101-246105 (2002).; (3) J. Lee, et al., PRL 125, 192503 (2020).

Facility for Rare Isotope Beams

- Why ²²Al and ²³Al possibly have a proton-halo phenomena
 - Mean field calculations of its charge distribution support large quadrupole deformation¹
 - An increasing radial extent predicts an increase of the mean square charge radius up to ²²Al²
 - The spin is known to be large, 4+ and 5/2+ for ²²Al and ²³Al respectively, and leads towards the final proton being in the d orbit in the ground state, which does not support existence of a halo structure

(1) R. Panda, et al. Physics of Atomic Nuclei 81, 417 (2018).; (2) "Valence-Space In-Medium-Similarity Renormalization Group Calculations" with different nuclear forces. (J. Holth et al.)

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

- Why ²²Al and ²³Al possibly have a proton-halo phenomena
 - First precision mass measurement of ²²Al performed by LEBIT observed a small proton separation energy of 99.2(1.0) keV which agrees with predictions made with the *sd*-shell USD Hamiltonians¹
 - Investigating the result with the particle-plus-rotor model which includes coupling to continuum states does not lead to significant deformation or a fully developed halo structure¹

(1) Campbell, S. E., et al. Physical Review Letters 132.15: 152501(2024).

Facility for Rare Isotope Beams

Stopped Beam Experimental Area

Facility for Rare Isotope Beams

BECOLA Beamline

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

BECOLA - RISE

 The RISE install included an injection seeded cavity and upgrade to the BECOLA light transport system

> Injection Seeded Cavity photos removed for uploading slides to conference website.

BECOLA - RISE

Two new detectors – MagneToF and Beta Detector

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

BECOLA - RISE

- In 2022 the RISE Beamline was added to the BECOLA beamline and was successfully commissioned with stable ²⁷Al
 - Throughout 2022-2023 7 transitions, involving 6 different states, were measured
- The RISE beamline received its first online FRIB beam on the 18th of May 2024

BECOLA – RISE Experiment

- At the BEam COoling LAser spectroscopy (BECOLA) facility at the Facility for Rare Isotope Beams (FRIB) we measured the change in mean-square nuclear charge radii for ²²⁻²⁵AI
 - Charge radius is a direct measurement of the proton distribution

Aluminum Line-shape

- The charge-exchange reaction and in-flight spontaneous decay were simulated by Adam Dockery to find contributing energy components and relative amplitudes
- No free variables were introduced for side-peak amplitude or separation distance
- To maintain the line-shape and avoid inelastic collisions in the charge-exchange cell a low neutralization efficiency was used for the experiment

²²⁻²⁵Al were successfully measured at BECOLA-RISE

Facility for Rare Isotope Beams

²²⁻²⁵Al were successfully measured at BECOLA-RISE

Facility for Rare Isotope Beams

²²⁻²⁵Al were successfully measured at BECOLA-RISE

Facility for Rare Isotope Beams

²²⁻²⁵Al were successfully measured at BECOLA-RISE

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

²²⁻²⁵Al were successfully measured at BECOLA-RISE

Facility for Rare Isotope Beams

Principle to Deduce Charge Radius

- Isotope shift: frequency shift of an atomic transition between different isotopes
 - $\delta v^{A,A'} = \delta v^{A,A'}_{mass shift} + F(Z)\delta \langle r^2 \rangle^{A,A'}$
 - Theoretical calculations of atomic factors are available through Leonid Skripnikov (Saint Petersburg State University)¹ » F = 70.11(12) $\frac{MHZ}{fm^2}$ » K_{MS} = -0.7(2.1) GHz u

Results from the Aluminum experiment will be published in a future publication.

(1) Skripnikov, I., et al. arXiv:2404.13369v1 [physics.atom-ph] 20 Apr 2024.

Preliminary charge radii trend

Results from the Aluminum experiment will be published in a future publication.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Preliminary results with published ²⁸⁻³²Al values

Results from the Aluminum experiment will be published in a future publication.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

B. J. Rickey, June 12, 2024 PLATAN, Slide 21

Conclusions

- The RISE beamline was successfully added to the BECOLA beamline and commissioned with Aluminum
- Preliminary results for the differential mean square charge radii were obtained for ²²⁻²⁵AI
- A detailed analysis of the online Aluminum data is ongoing and a publication of the results will be written

Thank you

BECOLA at FRIB

- Adam Dockery
- Kei Minamisono
- Mason Moenter
- Alejandro Ortiz Cortes
- Henry Sims

Collaborators

- Massachusetts Institute of Technology
 - » Alex Brinson
 - » Ronald Fernando Garcia Ruiz (Aluminum Co-Spokesperson)
 - » Jonas Karthein
 - » Fabian Pastrana Cruz
 - » Adam Vernon* (Aluminum Co-Spokesperson)
 - » Shane Wilkins

Argonne National Laboratory

- » Jeremy Lantis
- » Bernhard Maaß
- » Peter Müller
- Technische Universität Darmstadt
 - » Kristian König
 - » Patrick Müller
 - » Wilfried Nörtershäuser
 - » Julian Palmes
 - » Laura Renth
 - » Dominic Rossi

- Oakridge National Laboratory
 - » James Allmond
 - » Michael Febbraro
 - » Tim Gray
 - » Toby King
 - » Charlie Rasco
- LEBIT at FRIB
 - » Scott Campbell
 - » Hannah Erington
 - » Christian Ireland
 - » Franziska Maria
 - » Ryan Ringle
- South Carolina State
 University
 - » Christina Jones
 - » Sophia Papa
 - » Ram Yadav
 - *Currently at Duke University

Facility for Rare Isotope Beams