Nuclear octupole shapes in Actinides with Fayans functionals

G. Danneaux¹ gauthier.j.danneaux@jyu.fi

¹ Department of Physics, University of Jyväskylä, Jyväskylä, Finland

PLATAN 2024, JUNE 11th 2024

JYVÄSKYLÄN YLIOPISTO

UNIVERSITY OF JYVÄSKYLÄ

4) At the heart of nuclei • Density Functional Theory -> iterative self-consistent operations -> stable solution

- Density Functional Theory -> iterative self-consistent operations -> stable solution
- Energy Density Functional

$$\begin{aligned} \epsilon_t^{even} &= \left(C_{t0}^{\rho} + \rho_0^{\gamma} C_{tD}^{\rho} \right) \rho_t^2 + C_t^{\tau} \rho_t \tau_t + C_t^{\Delta \rho} \rho_t \Delta \rho_t + C_t^{\nabla J} \rho_t \nabla J_t + C_t^J J_t^2 \\ \epsilon_t^{odd} &= \left(C_{t0}^s + \rho_0^{\gamma} C_{tD}^s \right) s_t^2 + \cdots \quad t = 0, 1 \end{aligned}$$

- Density Functional Theory -> iterative self-consistent operations -> stable solution
- Energy Density Functional

$$\epsilon_t^{even} = \left(C_{t0}^{\rho} + \rho_0^{\gamma} C_{tD}^{\rho}\right)\rho_t^2 + C_t^{\tau} \rho_t \tau_t + C_t^{\Delta \rho} \rho_t \Delta \rho_t + C_t^{\nabla J} \rho_t \nabla J_t + C_t^J J_t^2 \\ \epsilon_t^{odd} = \left(C_{t0}^s + \rho_0^{\gamma} C_{tD}^s\right)s_t^2 + \cdots \quad t = 0,1$$

• Variety of Skyrme-based EDFs, adjusted, strong results [1]

- Density Functional Theory -> iterative self-consistent operations -> stable solution
- Energy Density Functional

$$\epsilon_t^{even} = \left(C_{t0}^{\rho} + \rho_0^{\gamma} C_{tD}^{\rho}\right)\rho_t^2 + C_t^{\tau} \rho_t \tau_t + C_t^{\Delta \rho} \rho_t \Delta \rho_t + C_t^{\nabla J} \rho_t \nabla J_t + C_t^J J_t^2 \\ \epsilon_t^{odd} = \left(C_{t0}^s + \rho_0^{\gamma} C_{tD}^s\right)s_t^2 + \cdots \quad t = 0,1$$

- Variety of Skyrme-based EDFs, adjusted, strong results [1]
- Still lacks in systematics, excitation spectra, etc.

- Density Functional Theory -> iterative self-consistent operations -> stable solution
- Energy Density Functional

$$\epsilon_t^{even} = \left(C_{t0}^{\rho} + \rho_0^{\gamma} C_{tD}^{\rho}\right) \rho_t^2 + C_t^{\tau} \rho_t \tau_t + C_t^{\Delta \rho} \rho_t \Delta \rho_t + C_t^{\nabla J} \rho_t \nabla J_t + C_t^J J_t^2 \\ \epsilon_t^{odd} = \left(C_{t0}^s + \rho_0^{\gamma} C_{tD}^s\right) s_t^2 + \cdots \quad t = 0,1$$

- Variety of Skyrme-based EDFs, adjusted, strong results [1]
- Still lacks in systematics, excitation spectra, etc.
- Octupole deformation [2], lower impact in current gen EDFs

- Density Functional Theory -> iterative self-consistent operations -> stable solution
- Energy Density Functional

$$\epsilon_t^{even} = \left(C_{t0}^{\rho} + \rho_0^{\gamma} C_{tD}^{\rho}\right) \rho_t^2 + C_t^{\tau} \rho_t \tau_t + C_t^{\Delta \rho} \rho_t \Delta \rho_t + C_t^{\nabla J} \rho_t \nabla J_t + C_t^J J_t^2 \\ \epsilon_t^{odd} = \left(C_{t0}^s + \rho_0^{\gamma} C_{tD}^s\right) s_t^2 + \cdots \qquad t = 0,1$$

- Variety of Skyrme-based EDFs, adjusted, strong results [1]
- Still lacks in systematics, excitation spectra, etc.

- Octupole deformation [2], lower impact in current gen EDFs
- Fayans Pairing Term [3] -> adjusted Next-gen Fayans Functionals [4] [5] [6]

1) At the heart of nuclei Skyrme and

$$\mathcal{E}_{\text{pair},q} = \frac{1}{4} V_{\text{pair},q} \left(1 - \frac{\rho_0}{\rho_{\text{pair}}} \right) \breve{\rho}_q^2 \qquad (q = p, n)$$

$$\begin{split} \mathcal{E}_{\mathrm{Sk},t} &= C_t^{\rho\rho}(\rho_0)\rho_t^2 + C_t^{\rho\tau}\rho_t\tau_t + C_t^{\rho\Delta\rho}\rho_t\Delta\rho_t + C_t^{\rho\nabla J}\rho_t\nabla\cdot\boldsymbol{J}_t + C_t^{J^2}\boldsymbol{J}_t^2\\ E_{\mathrm{C}} &= e^2\int d^3r\,d^3r'\rho_p(\boldsymbol{r})\frac{1}{|\boldsymbol{r}-\boldsymbol{r}'|}\rho_p(\boldsymbol{r}')\\ \mathcal{E}_{\mathrm{C,ex}} &= -\frac{3}{4}e^2\left(\frac{3}{\pi}\right)^{1/3}\rho_p^{4/3}. \end{split}$$

Fayans EDFs

$$\mathcal{E}_{\mathrm{Fy},q}^{\mathrm{pair}} = \frac{2\varepsilon_F}{3\rho_{\mathrm{sat}}} \breve{\rho}_q^2 \left[f_{\mathrm{ex}}^{\xi} + h_+^{\xi} x_{\mathrm{pair}}^{\gamma} + h_{\nabla}^{\xi} r_s^2 (\nabla x_{\mathrm{pair}})^2 \right]$$

$$\begin{split} x_{t} &= \frac{\rho_{t}}{\rho_{\text{sat}}}, \quad x_{\text{pair}} = \frac{\rho_{0}}{\rho_{\text{pair}}} \\ \mathcal{E}_{\text{Fy}}^{\text{v}} &= \frac{1}{3} \varepsilon_{F} \rho_{\text{sat}} \left[a_{+}^{\text{v}} \frac{1 - h_{1+}^{\text{v}} x_{0}^{\sigma}}{1 + h_{2+}^{\text{v}} x_{0}^{\sigma}} x_{0}^{2} + a_{-}^{\text{v}} \frac{1 - h_{1-}^{\text{v}} x_{0}}{1 + h_{2-}^{\text{v}} x_{0}} x_{1}^{2} \right] \\ \mathcal{E}_{\text{Fy}}^{\text{s}} &= \frac{1}{3} \varepsilon_{F} \rho_{\text{sat}} \frac{a_{+}^{\text{s}} r_{s}^{2} (\nabla x_{0})^{2}}{1 + h_{+}^{\text{s}} x_{0}^{\sigma} + h_{\nabla}^{\text{s}} r_{s}^{2} (\nabla x_{0})^{2}} \\ \mathcal{E}_{\text{Fy}}^{\text{ls}} &= \frac{4 \varepsilon_{F} r_{s}^{2}}{3 \rho_{\text{sat}}} \left(\kappa \rho_{0} \nabla \cdot J_{0} + \kappa' \rho_{1} \nabla \cdot J_{1} + g J_{0}^{2} + g' J_{1}^{2} \right) \\ \mathcal{E}_{\text{C,ex}}^{\text{c}} &= -\frac{3}{4} e^{2} \left(\frac{3}{\pi} \right)^{1/3} \rho_{p}^{4/3} (1 - h_{\text{C}} x_{0}^{\sigma}) \end{split}$$

G. Danneaux

- Actinides and superheavy clusters expected to present β_3 [7] [8]

- Actinides and superheavy clusters expected to present β_3 [7] [8]
- Systematic survey

2) Actinides and octupoles

- Actinides and superheavy clusters expected to present β_3 [7] [8]
- Systematic survey

2) Actinides and octupoles

- Actinides and superheavy clusters expected to present β_3 [7] [8]
- Systematic survey

• Ground state energy, β_2 , β_3 , $\Delta_{1;2n}$, rms radii, etc.

2) Actinides and octupoles

- Actinides and superheavy clusters expected to present β_3 [7] [8]
- Systematic survey

- Spanned whole cluster 84 < Z < 108; 120 < N < 150
- Ground state energy, β_2 , β_3 , $\Delta_{1;2n}$, rms radii, etc.
- Comparison to current-gen EDFs and studies on pear-shaped nuclei [9]

3) Fayans results in Actinides (FYdrHFB)

3) Fayans results in Actinides (FYdrHFB)

G. Danneaux

3) Fayans results in Actinides (FYdrHFB)

G. Danneaux

3) Fayans results in Actinides (FYstd)

3) Fayans results in Actinides (FYstd)

G. Danneaux

3) Fayans results in Actinides (FYstd)

G. Danneaux

1) Even-even computation around expected Q2-Q3 for min(E) of odd nucleus

- 1) Even-even computation around expected Q2-Q3 for min(E) of odd nucleus
- 2) Select reasonable blocking orbitals candidates

90_Th_210_FYdrHFB neutron blocking

num=	1 block=	1 state=	1	1 Eqp=	0.98849777	(1-2N)E=	-0.43803999	Ovlp=	0.48581159	1-[5,3,0]
num=	2 block=	1 state=	2	2 Eqp=	1.03132448	(1-2N)E=	-0.79448565	Ovlp=	0.50056312	1+[6, 2, 0]
num=	3 block=	2 state=	1	154 Eqp=	1.03849441	(1-2N)E=	0.59329136	Ovlp=	0.66069727	3-[5,4,1]
num=	4 block=	1 state=	3	3 Eqp=	1.09072859	(1-2N)E=	0.31649926	Ovlp=	0.61462786	1-[5,4,1]
num=	5 block=	2 state=	2	155 Eqp=	1.12867326	(1-2N)E=	-0.92131424	Ovlp=	0.53585210	3+[6, 3, 1]
num=	6 block=	3 state=	1	290 Eqp=	1.33024372	(1-2N)E=	-1.16652448	Ovlp=	0.60205808	5+[6, 2, 2]
num=	7 block=	2 state=	3	156 Eqp=	1.33143102	(1-2N)E=	-1.08108058	Ovlp=	0.51947902	3-[5,3,2]
num=	8 block=	3 state=	2	291 Eqp=	1.36263221	(1-2N)E=	-1.21421565	Ovlp=	0.57512942	5-[5,3,2]
num=	9 block=	4 state=	1	410 Eqp=	1.65087848	(1-2N)E=	-1.53015780	Ovlp=	0.58929986	7+[6, 3, 3]
num=	10 block=	5 state=	1	515 Eqp=	2.11694535	(1-2N)E=	-2.00442036	Ovlp=	0.76908035	9+[6, 2, 4]
num=	11 block=	5 state=	2	516 Eqp=	2.62695340	(1-2N)E=	2.52311239	Ovlp=	0.83796064	9+[6, 0, 4]
num=	12 block=	1 state=	4	4 Eqp=	2.63183142	(1-2N)E=	1.52769455	Ovlp=	0.76577608	1-[5, 5, 0]
num=	13 block=	1 state=	5	5 Eqp=	2.67050206	(1-2N)E=	-1.69863083	Ovlp=	0.62843667	1-[5, 1, 0]
num=	14 block=	2 state=	4	157 Eqp=	2.74809493	(1-2N)E=	-2.68508005	Ovlp=	0.71099017	3-[5,1,2]
num=	15 block=	6 state=	1	606 Eqp=	2.76648130	(1-2N)E=	-2.57569794	Ovlp=	0.90042656	11+[6, 1, 5]
num=	16 block=	1 state=	6	6 Eqp=	2.78133078	(1-2N)E=	-2.70752540	Ovlp=	0.69568921	1-[5, 0, 1]
num=	17 block=	6 state=	2	607 Eqp=	2.95067683	(1-2N)E=	2.77257885	Ovlp=	0.91231534	11+[6, 0, 6]

- 1) Even-even computation around expected Q2-Q3 for min(E) of odd nucleus
- 2) Select reasonable blocking orbitals candidates

90_Th_210_FYdrHFB neutron blocking

num=	1 block=	1 state=	1	1 Eqp=	0.98849777	(1-2N)E=	-0.43803999	Ovlp=	0.48581159	1-[5,3,0]
num=	2 block=	1 state=	2	2 Eqp=	1.03132448	(1-2N)E=	-0.79448565	Ovlp=	0.50056312	1+[6, 2, 0]
num=	3 block=	2 state=	1	154 Eqp=	1.03849441	(1-2N)E=	0.59329136	Ovlp=	0.66069727	3-[5,4,1]
num=	4 block=	1 state=	3	3 Eqp=	1.09072859	(1-2N)E=	0.31649926	Ovlp=	0.61462786	1-[5,4,1]
num=	5 block=	2 state=	2	155 Eqp=	1.12867326	(1-2N)E=	-0.92131424	Ovlp=	0.53585210	3+[6, 3, 1]
num=	6 block=	3 state=	1	290 Eqp=	1.33024372	(1-2N)E=	-1.16652448	Ovlp=	0.60205808	5+[6, 2, 2]
num=	7 block=	2 state=	3	156 Eqp=	1.33143102	(1-2N)E=	-1.08108058	Ovlp=	0.51947902	3-[5,3,2]
num=	8 block=	3 state=	2	291 Eqp=	1.36263221	(1-2N)E=	-1.21421565	Ovlp=	0.57512942	5-[5,3,2]
num=	9 block=	4 state=	1	410 Eqp=	1.65087848	(1-2N)E=	-1.53015780	Ovlp=	0.58929986	7+[6, 3, 3]
num=	10 block=	5 state=	1	515 Eqp=	2.11694535	(1-2N)E=	-2.00442036	Ovlp=	0.76908035	9+[6, 2, 4]
num=	11 block=	5 state=	2	516 Eqp=	2.62695340	(1-2N)E=	2.52311239	Ovlp=	0.83796064	9+[6, 0, 4]
num=	12 block=	1 state=	4	4 Eqp=	2.63183142	(1-2N)E=	1.52769455	Ovlp=	0.76577608	1-[5, 5, 0]
num=	13 block=	1 state=	5	5 Eqp=	2.67050206	(1-2N)E=	-1.69863083	Ovlp=	0.62843667	1-[5, 1, 0]
num=	14 block=	2 state=	4	157 Eqp=	2.74809493	(1-2N)E=	-2.68508005	Ovlp=	0.71099017	3-[5,1,2]
num=	15 block=	6 state=	1	606 Eqp=	2.76648130	(1-2N)E=	-2.57569794	Ovlp=	0.90042656	11+[6, 1, 5]
num=	16 block=	1 state=	6	6 Eqp=	2.78133078	(1-2N)E=	-2.70752540	Ovlp=	0.69568921	1-[5, 0, 1]
num=	17 block=	6 state=	2	607 Eqp=	2.95067683	(1-2N)E=	2.77257885	Ovlp=	0.91231534	11+[6, 0, 6]

3) Unconstrained calculation for each possible configuration

- Even-even computation around expected Q2-Q3 for min(E) of odd nucleus 1)
- Select reasonable blocking orbitals candidates 2)

90_Th_210_FYdrHFB neutron blocking 1 block= 1 state= 1 1 Eqp= 0.98849777 (1-2N)E= -0.43803999 Ovlp= 0.48581159 1-[5, 3, 0]

num=	2 DIOCK=	1 state=	2	2 Eqp=	1.03132448	(1-2N)E=	-0.79448565	ovib=	0.50056312	1+[6,	2,	0]
num=	3 block=	2 state=	1	154 Eqp=	1.03849441	(1-2N)E=	0.59329136	Ovlp=	0.66069727	3-[5,	4,	1]
num=	4 block=	1 state=	3	3 Eqp=	1.09072859	(1-2N)E=	0.31649926	Ovlp=	0.61462786	1-[5,	4,	1]
num=	5 block=	2 state=	2	155 Eqp=	1.12867326	(1-2N)E=	-0.92131424	Ovlp=	0.53585210	3+[6,	З,	1]
num=	6 block=	3 state=	1	290 Eqp=	1.33024372	(1-2N)E=	-1.16652448	Ovlp=	0.60205808	5+[6,	2,	2]
num=	7 block=	2 state=	3	156 Eqp=	1.33143102	(1-2N)E=	-1.08108058	Ovlp=	0.51947902	3-[5,	З,	2]
num=	8 block=	3 state=	2	291 Eqp=	1.36263221	(1-2N)E=	-1.21421565	Ovlp=	0.57512942	5-[5,	З,	2]
num=	9 block=	4 state=	1	410 Eqp=	1.65087848	(1-2N)E=	-1.53015780	Ovlp=	0.58929986	7+[6,	З,	3]
num=	10 block=	5 state=	1	515 Eqp=	2.11694535	(1-2N)E=	-2.00442036	Ovlp=	0.76908035	9+[6,	2,	4]
num=	11 block=	5 state=	2	516 Eqp=	2.62695340	(1-2N)E=	2.52311239	Ovlp=	0.83796064	9+[6,	0,	4]
num=	12 block=	1 state=	4	4 Eqp=	2.63183142	(1-2N)E=	1.52769455	Ovlp=	0.76577608	1-[5,	5,	0]
num=	13 block=	1 state=	5	5 Eqp=	2.67050206	(1-2N)E=	-1.69863083	Ovlp=	0.62843667	1-[5,	1,	0]
num=	14 block=	2 state=	4	157 Eqp=	2.74809493	(1-2N)E=	-2.68508005	Ovlp=	0.71099017	3-[5,	1,	2]
num=	15 block=	6 state=	1	606 Eqp=	2.76648130	(1-2N)E=	-2.57569794	Ovlp=	0.90042656	11+[6,	1,	5]
num=	16 block=	1 state=	6	6 Eqp=	2.78133078	(1-2N)E=	-2.70752540	Ovlp=	0.69568921	1-[5,	0,	1]
num=	17 block=	6 state=	2	607 Eqp=	2.95067683	(1-2N)E=	2.77257885	Ovlp=	0.91231534	11+[6,	0,	6]

- Unconstrained calculation for each possible configuration 3)
- Lowest E -> Ground state 4)

num=

- 1) Even-even computation around expected Q2-Q3 for min(E) of odd nucleus
- 2) Select reasonable blocking orbitals candidates

90_Th_210_FYdrHFB neutron blocking 1 block= num= 1 state= 1 1 Eqp =0.98849777 (1-2N)E= -0.43803999 Ovlp= 0.48581159 1- 5, 3, 0 2 block= 1 state= 2 2 Eqp =1.03132448 (1-2N)E= -0.79448565 Ovlp= 0.50056312 1+ 6, 2,0] num= 3 block= 2 state= 154 Eqp= 1.03849441 (1-2N)E=0.59329136 Ovlp= 0.66069727 1 3- [5, 4, 1] num= (1-2N)E =4 block= 1 state= 3 3 Eqp= 1.09072859 0.31649926 Ovlp= 0.61462786 1- 5, 4, 1 num= (1-2N)E= -0.92131424 5 block= 2 state= 0.53585210 3+[6, 3, 1] 2 155 Eqp= 1.12867326 Ovlp= num= 3 state= 6 block= 290 Eqp= 1.33024372 (1-2N)E= -1.16652448 Ovlp= 0.60205808 num= 1 5+[6, 2, 2]0.51947902 3-[5, 3, 2] 7 block= 2 state= 3 156 Eqp= 1.33143102 (1-2N)E= -1.08108058 Ovlp= num= 8 block= 3 state= (1-2N)E= -1.21421565 0.57512942 5-[5,3,2] 2 291 Eqp= 1.36263221 Ovlp= num= 9 block= 4 state= 1.65087848 (1-2N)E= -1.53015780 Ovlp= 0.58929986 1 410 Eqp= 7+[6,3,3] num= (1-2N)E= -2.00442036 0.76908035 9+[6, 2, 4] 10 block= 5 state= 1 515 Eqp= 2.11694535 Ovlp= num= 5 state= (1-2N)E =0.83796064 9+[6,0,4] num= 11 block= 2 516 Eqp= 2.62695340 2.52311239 Ovlp= 12 block= 1 state= 4 Eqp= 2.63183142 (1-2N)E =1.52769455 Ovlp= 0.76577608 1-[5,5,0] num= 4 (1-2N)E= -1.69863083 0.62843667 1-[5, 1, 0] 13 block= 1 state= 5 5 Eqp= 2.67050206 Ovlp= num= 14 block= (1-2N)E= -2.68508005 0.71099017 3-[5, 1, 2] 2 state= 4 157 Eqp= 2.74809493 Ovlp= num= 15 block= 6 state= (1-2N)E= -2.57569794 606 Eqp= 2.76648130 Ovlp= $0.90042656 \ 11+[6, 1, 5]$ num= 1 (1-2N)E= -2.70752540 0.69568921 1-[5, 0, 1] num= 16 block= 1 state= 6 6 Eqp= 2.78133078 Ovlp= 17 block= 6 state= 2 607 Eqp= 2.95067683 (1-2N)E=2.77257885 Ovlp= $0.91231534 \ 11+[6, 0, 6]$ num=

- 3) Unconstrained calculation for each possible configuration
- 4) Lowest E -> Ground state

Whole Q2-Q3 landscape unreasonable for non-ee nuclei; but isotopic chains can be built

G. Danneaux

G. Danneaux

90_Th_120-150_FYdrHFB

90_Th_120-150_FYstd

• Current-gen widely used EDFs: UNEDF(0;1;2), SLY4, etc

• Current-gen widely used EDFs: UNEDF(0;1;2), SLY4, etc

• Current-gen widely used EDFs: UNEDF(0;1;2), SLY4, etc

• Current-gen widely used EDFs: UNEDF(0;1;2), SLY4, etc

• Current-gen widely used EDFs: UNEDF(0;1;2), SLY4, etc

• Survey of pear-shaped landscapes with Skyrme-based EDFs [9]

$$0.00$$
 0.05 0.10 0.15 ≥ 0.20
 $β_3$

[9] Y. Cao, S.E. Agbemava, A.V. Afanasjev et al., Phys. Rev. C, 102, 12 (2020)

• Survey of pear-shaped landscapes with Skyrme-based EDFs [9]

et al., Phys. Rev. C, 102, 12 (2020)

FYdrHFB 84_108 - 120_150 beta_3

G. Danneaux

G. Danneaux

Difference in ground state energy gained from the inclusion of octupole deformation

11/06/2024

41

FYdrHFB 84_108 - 120_150 Ediff

Difference in ground state energy gained from the inclusion of octupole deformation

Ν

FYdrHFB 84_108 - 120_150 Ediff: E(q2,q3)-E(q2,q3=0)

G. Danneaux

108 Hs 0.035 Sg 106 Rf 104 0.030 No 102 0.025 Fm 100 Cf 98 0.020 Ζ 96 Cm β_3 Pu 94 0.015 92 U 90 Th 0.010 Ra 88 0.005 86 Rn Ро 84 0.000 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150

Ν

FYstd 84_108 - 120_150 beta_3

G. Danneaux

Difference in ground state energy gained from the inclusion of octupole deformation

G. Danneaux

Difference in ground state energy gained from the inclusion of octupole deformation

• Given minor revisions -> as good as current state-of-the art Skyrme EDFs

- Given minor revisions -> as good as current state-of-the art Skyrme EDFs
- Coherent results regarding E, r_{rms} , Δ_n , β_2 , odd-even effects, etc.

- Given minor revisions -> as good as current state-of-the art Skyrme EDFs
- Coherent results regarding E, r_{rms} , Δ_n , β_2 , odd-even effects, etc.
- Returned predicted octupole clusters in Actinides with stronger β_3

- Given minor revisions -> as good as current state-of-the art Skyrme EDFs
- Coherent results regarding *E*, r_{rms} , Δ_n , β_2 , odd-even effects, etc.
- Returned predicted octupole clusters in Actinides with stronger β_3
- Strong step towards better understanding of heavily-deformed nuclei complex processes s.a. systematics, spectra, nuclear Schiff moment, fission, etc.

Thanks to my colleagues:

M. Kortelainen, R. Han; University of Jyväskylä. J. Dobaczewski; University of York. K. Bennaceur; IPNL

G. Danneaux

- [1] J. Bonnard, J. Dobaczewski, G. Danneaux et al., Phys. Lett. B, 843, (2023)[2] P.A. Butler, Proc. R. Soc. A, 476 (2020)
- [3] P.G. Reinhard, W. Nazarewicz, Phys. Rev. C, 95, 6 (2017)]
- [4] A.J. Miller, K. Minamisono, A. Klose et al., Nature Physics, 15 (2019)
- [5] A. Koszorus, X. Yang, W. Jiang, Nature Physics, 17 (2021)
- [6] M. Reponen et al., Nature Commun., 12, 1 (2021)
- [7] J. Dobaczewski, J. Engel, M. Kortelainen et al., Phys. Rev. Lett., 121, 23 (2018)
- [8] S. Ebata and T. Nakatsukasa, Physica Scripta, 92, 6 (2017)
- [9] Y. Cao, S.E. Agbemava, A.V. Afanasjev et al., Phys. Rev. C, 102, 12 (2020)

FYdrHFB 54_64 - 84_100 beta_2

**/06/2024 55

FYdrHFB 54_64 - 84_100 beta_3

Cesium-centered cluster

57

**/06/2024 58

G. Danneaux

0.35 64 - 0.30 62 0.25 60 - 0.20 Ζ β_2 0.15 58 0.10 56 0.05 54 0.00 . 86 . 88 . 90 . 94 96 84 92 98 100 **/06/2024 G. Danneaux Ν

59

FYstd 54_64 - 84_100 beta_2

64 - 0.0200 - 0.0175 62 - 0.0150 60 0.0125 Ζ β₃ - 0.0100 58 0.0075 56 - 0.0050 - 0.0025 54 0.0000 . 86 84 88 90 92 94 96 98 100 G. Danneaux **/06/2024 Ν

60

FYstd 54_64 - 84_100 beta_3

FYstd 54_64 - 84_100 Ediff: E(q2,q3)-E(q2,q3=0)

FYstd 84_108 - 120_150 beta_2

FYdrHFB 84_108 - 120_150 beta_2

