'IN +	β+	β+	β+	β+	β+	β+	°IΠ β+	e- capture	2IΠ β+	Stable	°-"Π β-	Stable	°°IN β-	°΄΄IN β-	β-	β.	β-	β-	β-	β.
Cd	¹⁰³ Cd	¹⁰⁴ Cd	¹⁰⁵ Cd	¹⁰⁶ Cd	¹⁰⁷ Cd	¹⁰⁸ Cd	¹⁰⁹ Cd	¹¹⁰ Cd	d	¹¹² C).	¹³ (,d	¹¹⁴ Cd	¹¹⁵ Cd	¹¹⁶ Cd	¹¹⁷ Cd	¹¹⁸ Cd	¹¹⁹ Cd	¹²⁰ Cd	¹²¹ Cd	¹²² CC
	β+	β+	β+	_{Stable}	β+	_{Stable}	e- capture	_{Stable}	s_⊫	Tab	Str →	_{Stable}	β-	_{Stable}	β-	β-	β-	β-	β-	β-
Ag	¹⁰² Ag	¹⁰³ Ag	¹⁰⁴ Ag	¹⁰⁵ Ag	¹⁰⁶ Ag	¹⁰⁷ Ag	¹⁰⁸ Ag	¹⁰⁹ Ag	¹¹⁰ Ag	¹¹¹ Ag	¹¹² Ag	¹¹³ Ag	¹¹⁴ Ag	¹¹⁵ Ag	¹¹⁶ Ag	¹¹⁷ Ag	¹¹⁸ Ag	¹¹⁹ Ag	¹²⁰ Ag	¹²¹ Ας
	_{β+}	_{β+}	_{β+}	_{β+}	_{β+}	_{Stable}	β-	_{Stable}	β-	β-	β-	β-	β-	β-	β-	β-	β-	β-	β-	β-
Pd	¹⁰¹ Pd	¹⁰² Pd	¹⁰³ Pd	¹⁰⁴ Pd	¹⁰⁵ Pd	¹⁰⁶ Pd	¹⁰⁷ Pd	¹⁰⁸ Pd	¹⁰⁹ Pd	¹¹⁰ Pd	¹¹¹ Pd	¹¹² Pd	¹¹³ Pd	¹¹⁴ Pd	¹¹⁵ Pd	¹¹⁶ Pd	¹¹⁷ Pd	¹¹⁸ Pd	¹¹⁹ Pd	¹²⁰ Ρ0
	β+	_{Stable}	e- capture	_{Stable}	_{Stable}	_{Stable}	β-	_{Stable}	β-	_{Stable}	β-									
Rh	¹⁰⁰ Rh	¹⁰¹ Rh	¹⁰² Rh	¹⁰³ Rh	¹⁰⁴ Rh	¹⁰⁵ Rh	¹⁰⁶ Rh	¹⁰⁷ Rh	¹⁰⁸ Rh	¹⁰⁹ Rh	¹¹⁰ Rh	¹¹¹ Rh	¹¹² Rh	¹¹³ Rh	¹¹⁴ Rh	¹¹⁵ Rh	¹¹⁶ Rh	¹¹⁷ Rh	¹¹⁸ Rh	¹¹⁹ Rh
	e- capture	e- capture	β+	_{Stable}	β-	β-	β-	β-	β-	β-	β-	β-	β-	β-	β∙	β-	β-	β-	β-	β-
Ru	99Ru	¹⁰⁰ Ru	¹⁰¹ Ru	¹⁰² Ru	¹⁰³ Ru	¹⁰⁴ Ru	¹⁰⁵ Ru	¹⁰⁶ Ru	¹⁰⁷ Ru	¹⁰⁸ Ru	¹⁰⁹ Ru	¹¹⁰ Ru	¹¹¹ Ru	¹¹² Ru	¹¹³ Ru	¹¹⁴ Ru	¹¹⁵ Ru	¹¹⁶ Ru	¹¹⁷ Ru	¹¹⁸ RU
	Stable	_{Stable}	_{Stable}	_{Stable}	β-	_{Stable}	β-	β-	β-	β-	β-	β-	β-	β-	β-	β-	β-	β-	β-	β-
To	⁹⁸ Tc	99Tc	¹⁰⁰ Tc	¹⁰¹ TC	¹⁰² TC	¹⁰³ Tc	¹⁰⁴ Tc	¹⁰⁵ TC	¹⁰⁶ Tc	¹⁰⁷ Tc	¹⁰⁸ Tc	¹⁰⁹ Tc	110TC	111TC	¹¹² Tc	¹¹³ Tc	¹¹⁴ Tc	115TC	¹¹⁶ TC	¹¹⁷ Tc

Nuclear structure of Pd isotopes via optical spectroscopy

Sarina Geldhof

Atomic spectra

 $\nu_F = \nu_0 + Af(I, J, F) + Bg(I, J, F)$

$$A = \mu \frac{B_e}{|IJ|} \qquad B = e Q_s \left\langle \frac{\partial^2 V}{\partial z^2} \right\rangle$$

The IGISOL facility

← 30 kV →

10⁻⁶ mbar

-10 kV

Extractor

 Cyclotron beam hits thin target

Target

He gas

flow

 Recoils stopped in He buffer gas

500 V

To beam dump

Recoils

Cyclotron beam

100 mbar

- Supersonic jet guides into an ion guide
- Fast and chemically insensitive
 → universal

The IGISOL facility

Additions to the collinear laser spectroscopy beamline beforehand:

- Charge-exchange cell*
- New laser system

cw Matisse DS laser + WaveTrain-2

* Courtesy of W. Nörtershäuser, TU Darmstadt

A. Koszorús et al., Sci Rep 13, 4783 (2023)

Motivation

Gap in optical spectroscopy data: up to recently Tc, Ru, Rh, Pd isotopes 'missing'

Refractory elements & complex atomic structure

Measurements of charge radii powerful for testing nuclear Density Functional Theory (DFT) and ab-initio approaches

Ground state & isomer properties needed to clarify various phenomena in region and underpin decay spectroscopy studies

100

- Rapid changes in deformation, shape coexistence,...
- Firm spin assignments missing

J. Kurpeta et al., Phys. Rev. C 98, 024318 (2018) 5

G. Scamps et al., Eur. Phys. J. A 57, (2021)

2

1

0

P. Campbell, I. D. Moore and M. R. Pearson, Progress in Particle Physics 86, 127 (2016)

Results

Charge radii

$$\begin{split} \delta \nu^{A,A\prime} &= F \; \delta \langle r^2 \rangle^{A,A\prime} + M \; \frac{(A-A')}{AA'} \\ F &= -2.9 \; \text{GHz/fm}^2 \,, \, M = 845 \; \text{GHz amu} \end{split}$$

Parabolic curvature towards higher *N*, centred around N = 66, where largest degree of collectivity and deformation is expected

No sign of sudden change(s) in deformation

Comparison to nuclear DFT calculations

- UNEDF2
- Two forms of Fayans EDF which feature particular pairing functional

S. Geldhof et al., Hyperfine Interact 241, 41 (2020)

Charge radii: influence of pairing

Strong pairing correlations in Fy(Δr , HFB)

$$\delta \langle r^2 \rangle^{A,A\prime} = \delta \langle r^2 \rangle_0^{A,A\prime} + \langle r^2 \rangle_0 \frac{5}{4\pi} \delta \langle \beta_2^2 \rangle^{A,A\prime}$$

Fy(std)

110

Fy(Δr,HFB) Experimental

112

 β_2 extracted from electric quadrupole moments naively compared to calculations

0.0

-0.1

100

102

104 106 108

Mass Number (A)

M. Hukkanen et al., Phys. Rev. C 107 (2023)

D1S: L. M. Robledo and T. R. Rodriguez BSkG2: W. Ryssens et al., Eur. Phys. J. A 58:246 (2022)

10 A. Ortiz-Cortes et al., to be submitted

Perspectives

Push towards n-deficient isotopes using hot-cavity ion source

- Successful production and mass measurements recently
- In-source laser spectroscopy difficult, use RAPTOR?

See poster S. Kujanpää

Conclusion

- First laser spectroscopy of unstable Pd, first application of Fayans EDF to well-deformed nuclei
- Fy(Δr, HFB) performs well, but overestimates OES
- Allowing for triaxial shapes improves calculated charge radii, but difficult to pinpoint effect
- Odd-A spins established
- N=Z 'reached', to be studied

Sn, In, Ag: I. Angeli & K.P. Marinova, At. Data Nucl. Data Tables 99, 69 (2013)
 Sn: C. Gorges et al., Phys. Rev. Lett. 122, 192502 (2019)

Ag: M. Reponen et al., Nat. Commun. 12, 4596 (2021) Cd: M. Hammen et al., Phys. Rev. Lett. 121, 102501 (2018)

Thank you for your attention!

A. Ortiz-Cortes, O. Beliuskina, L. Caceres, P. Campbell, L. Cañete, B. Cheal, K. Chrysalidis, C.S. Devlin, R.P. de Groote, T. Eronen, Z. Ge, W. Gins, M. Kortelainen, A. Koszorus, S. Kujanpää, D. Nesterenko, F. Nowacki, I. Pohjalainen, I.D. Moore, A. Raggio, M. Reponen, L.M. Robledo, T.R. Rodríguez, J. Romero, A. de Roubin, H. Salvajols, F. Sommer

The University of Manchester

Preparation

6 tested transitions from ground and different metastable states populated in charge exchange

King plot technique for calibration of atomic factors

14 S. Geldhof et al., Hyperfine Interact 241, 41 (2020)