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Theory of neutrino oscillations

@ Fascinating features, e.g. flavor, particle-antiparticle and helicity coherence

Multiple approaches: wave packets, density matrices, mean field equations, spin projection
formalism ...
@ From quantum field theoretical viewpoint: How to include

o Coherence effects?
e Collision term for coherent neutrino states?

e Heavy neutrinos?

Conceptual problems: decoherence effects (quantum entanglement), separation of oscillations

scales, external magnetic fields...
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Quantum kinetic equations

@ Derive transport equations for mixing neutrinos from fundamental field theory formalism

e Include all flavor and particle-antiparticle coherences
o Only adiabatic background fields are assumed
o Equations valid for heavy and light neutrinos (UR-limit is not assumed)

o Generalized Feynman rules to compute collision terms which include coherently mixing species
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Real time Kadanoff-Baym equations in Wigner space

KSP(k,x) — e 2750 [5P (K, x)SP(k,x)] = 1,

~

KS*(k,x) — e 2700 [0 (K, x)S°(k,x)] = e 27 O[3

out

@ Exact to a given approximation for the self-energy function

= information about flavor and all particle-antiparticle coherences

@ Need for an approximation scheme which does not lose

information about coherence

(K,x)S?(k,x)]

iS<(u, v) = (D(v)y(u))

i57 (u, v) = (P(u)d(v))

S (u,v) = O(up — w)(S” +S7)
S?(u,v) = —0(vo — u)(S~ +S%)
R=k+id, p=<,>,
glk,x) = [ d*re*g(x+ ir,x—1r)
Tout(k, x) = e3% Ok 5 (k, x)

s=r,a
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Reduction of the KB equations

Decoupling

@ Statistical functions splitted into background and perturbation parts

Localization

@ Reduction of the infinite order gradient expansion: adiabatic background fields and local limit
Density matrix equations
@ Projective basis
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General transport equations

@ Describes flavor and all particle-antiparticle coherence effects

@ Holds for light and heavy neutrinos

Liouville term Leading oscillation scale Generalized forward scattering terms Collision term
<aa _ : <ee’ : He'ey/ <ea Hee’ <ae 5< hee’
at khlj (thu)aa/k Vi, khij —QIAWkU fkhu + I[(thji )a khil — (th’l ) khlj + Ckhl_]

(Integrating particle-antiparticle coherence out) l

_ 7 . . <h

O fichij + Viig k - V fignyy = —2ieDwiiifn + feniiokng Vienj(ewir) — iciknii Viewin(ewir) ficny + Ckhuee
(UR-limit) l
~ 1
_ 5< . =
8tf,f,,,-j + Vkij k - kaeh,-j = _’[Hkhy fkh]u + Ckhze with Vkij = E(Vk,' + ij)
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Collision terms

@ How to compute collision terms? )

@ Cannot use the usual non-coherent Feynman rules

o Neglect collisions between coherent particle species

@ Necessary to understand neutrino evolution in dense environments

o Role of particle-antiparticle coherence?

o Role of flavor coherence (collisions between flavor off-diagonal particle species)?
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Collision terms

@ Can be written as

1 1 / /
hee’ § ee e'e
CI§ Jkhij = = v 72@117, /dPSg |:§(M2)khij{p,',Y}Akhj{Pi’Y}’X =+ (hC)J, j|
b

@ Here we defined
d Pi al ay
/dPS3 E/[ 11 ](27T)454(k/ + P35, — Py — P3ly)s

3
1:1,3 27T zwp”,

Mt x 1 (X) = B () 12,y () R () £y (%) = (>

o All summed indices are in curly brackets Y = {X;, h',a,d',/}

Shorthand notation f, ;’”/( ) = f5x,(x), where h; is the helicity, a; energy sign index, and /; flavor
index
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Feynman rules for the matrix element

ai  kh bj b al _d'j €j e 1 ad’ . 0pnee
—®——— ~ DY . @ x@—e ~ — Dy Dy

khij oh 2(*);"5 khlj khji
k ai

bj P W9 o 7 k ai ba P ig u %
~ T‘u*,}/l PLUij ~ %'\/FPLUM_
Z < (w.q) W S (w.q)

ayly, o

o Simple and straightforward rules to

compute the matrix element

a p— Aa b
o Db = abNZb Py (K7 +m;) (K] +m))

™ pihj-”
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Results and Applications

o Particle-antiparticle coherence negligible

Usual density matrix equations and collision terms reproduced at the UR-limit

Useful to study decoherence effects, quantum entanglement ...

e Flavor dependence in the velocity term

o Controlled gradient expansion

Quantitative way to study how observer-system interference affects the evolution of the system
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Summary

@ Developed general formalism to model neutrino evolution with all local coherences and the full

collision term for coherent neutrino states

@ Only flavor coherence is needed for most of the neutrino physics problems
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Projective representation

= )
° Sk,.j can be parametrized as

Silkx)=>" fk<,,;a (t. x)Pi2;

haa’
where

ab a  0pb
'thu Nk;ijthi’Y ij

and the normalization factors are chosen as

—-1/2 2wk iWki 1/2

Nk: (Tl" thPk,’YoPk iY ) = { . }
v [ J ] WkiWkj + ab(m,-mj — |k|2)

@ The energy and helicity projection operators are defined as

Hei

Wki

)

1 ~ 1
Prn = 5(]1+ha~k'y5) and Pgi E(]l—I—a
with
Heij = (o - k)id — méu, f)kEa-IAWS
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Projective representation

@ Normalization factors can be chosen freely, but the above ones simplify the dynamical equations
the most
© Apparent singularities at wy,wk, = ee'(|k|> — m;m;) do not cause problems, since they cancel at the

end
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Transport equations

<ee’ e'e L <aa' __ : ee’ r<ee’ . He e/ 1% r<ea : Hee' \/ f<ae’ 5
affkhij +(thij)aa’k‘kahij = —2iAwi; T + il(Wiehii Val “ficnit — i(Wichis )afkhlj +C

< hee’
khij

where

' / ’ !
(Vﬁh?'j)aa’ S 52/6./])27_5/. + 536Vih?ie,
1 1 3 b .
be — ac p1bc
Viri = = NgiN <7{7 I 7] s
ij kij ' Ykij . bc)2 2c\2 -0ab ),
2 Wki (Nkij) (Nkij) Wk
’
= ’
20w = ewki — €'wyj,

ee’ \I __ e'e v H ae’
( khij)a =Tr [thjizeffkilpkh/j]
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Transport equations

e We consider vector-like gauge interactions (a; and bj; are flavor matrices, and v is the plasma
4-velocity):
Tk, x) = 7°(ak + bygh) PL
= (koa,-j + b,~j) P, — ajoc- kP,
— ((ko + hlkI)ay; + by ) PL = Vins(ko, x)Pr.

@ In this case the forward scattering tensor coefficient reads

Wek)h = o Viewn (awir, x),

1 /'ja Is/l:h ~ 1 mpm; (1)
abc _— ca pybc khl Jj c J
7khlii = EN"”N“J"((N;g.c.)z TNy P"”"((/\/;;;z)2 B abwk/wa-))
J! n b
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Transport equations in the UR-limit

. . ’ / .
@ In the UR-limit tensors 0% and V7 become very simple:

’ e/
Vf,‘}ee - méa,e’(ae,e’ + 56,—6/)

h ’
OkZ?e = 6376’(56,6’ 6h7—e + 6e,—e’6h,e)

@ Particle-antiparticle coherence averages out at timescales relevant for neutrino oscillations

@ According to above, the transport equations can be written in the UR-limit as

1 L T ge e Se
Ocficn + E{Vkv k -Vt = —ilHgns ficnl + Cin

16/11



Integrating out the particle-antiparticle coherence

Leading time-dependence of the particle-antiparticle coherence functions:

f,f,;je(t) ~ exp(—2iewyijt) with 20 = wki + Wk,

Leading time-dependence of the flavour coherence functions:

f,f,fu(t) ~ exp(—2ieAwgijt) with  2Awgj = wij — wgj

Weierstrass transform of equation: [ dt’ W(t, ') [e.o.m.(t')]

W(t,t') ~ exp(—(t — t')?) /202

Given hierarchy Awy < @k, we can choose a o such that 1/Awg > o > 1/wg
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Integrating out the particle-antiparticle coherence

@ Terms proportional to the coherence functions get exponentially suppressed:
At W(t, t)eg(t)ofs €(t') ~ cg(t)ofs, (t) exp(—2(d;ka)2)
@ cg, stands for any coefficient of §f, ¢ in the equation of motion

@ For a generic 2-2 scattering process:

on(t) = — (28w + 28w, + 28075 + 28070 )t

pihl] p2hlj Pkl
@ In the flavor oscillation scales ¢(t) causes fast oscillations if any of the terms corresponds to
coherence terms (a # a')

= Collision term averages out in the flavor oscillation scales
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