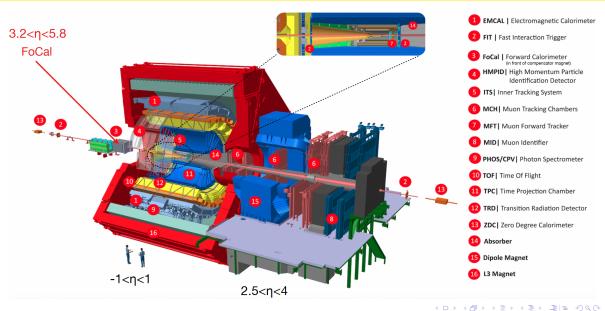
ALICE Forward Calorimeter (FOCAL) Upgrade

Hadi Hassan

University of Jyväskylä

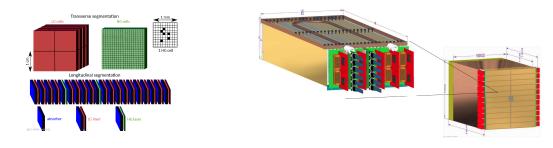
28/11/2024



Hadi Hassan (JYU)

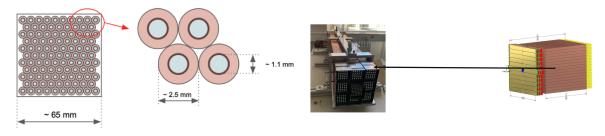
ALICE FOCAL upgrade

28/11/2024

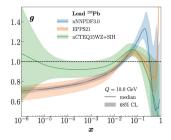

ALICE Forward Calorimeter (FOCAL)

28/11/2024 2/13

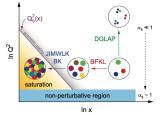
Electromagnetic calorimeter (FOCAL-E)

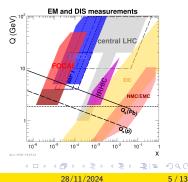

- The electromagnetic calorimeter is a Si+W sampling calorimeter with high granularity.
- \bullet It has 18 layers W+Si pads, and 2 W+Si pixels, with total length of \approx 20cm.
- \bullet Silicon sensor with pad size of 1 cm \times 1 cm with 8 \times 9 pads per sensor.
- \bullet Si pixels: ALPIDE pixel sensor (ALICE ITS vertex detector pixel sensor) with pixel size of 30 $\mu{\rm m}$ \times 30 $\mu{\rm m}$
- 1024 \times 512 pixels per chip of size 30 mm \times 15 mm.
- Main goal of pixel layers is shower separation.

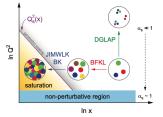
ELE NOR

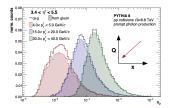

Hadronic Calorimeter (FOCAL-H)

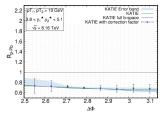
- The hadronic calorimeter will be used for photon isolation and jet measurements.
- It has a length of 110 cm.
- It consists of Copper tubes parallel to beam pipe (diameter 2.5 mm), filled with scintillating fibers (diameter 1 mm).

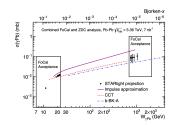

900 EIE 4EX 4E


- Nuclear modification of the gluon density at small-x
 - isolated photons in pp and pPb collisions.


< □ > < @ >

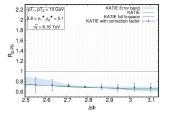

- Nuclear modification of the gluon density at small-x
 - isolated photons in pp and pPb collisions.
- Explore non-linear QCD evolution in regime of saturated gluons.

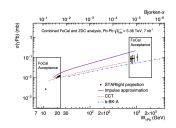

- Nuclear modification of the gluon density at small-x
 - isolated photons in pp and pPb collisions.
- Explore non-linear QCD evolution in regime of saturated gluons.
 - isolated photons.



900 EIE 4EX 4E

- Nuclear modification of the gluon density at small-x
 - isolated photons in pp and pPb collisions.
- Explore non-linear QCD evolution in regime of saturated gluons.
 - isolated photons.
 - measurements of forward azimuthal correlations: $(\pi^0,$
 - $\gamma_{\rm iso}$, jet)_{\rm trigg} x (π^0 , jet)_{\rm assoc} .
 - Quarkonia in UPC.

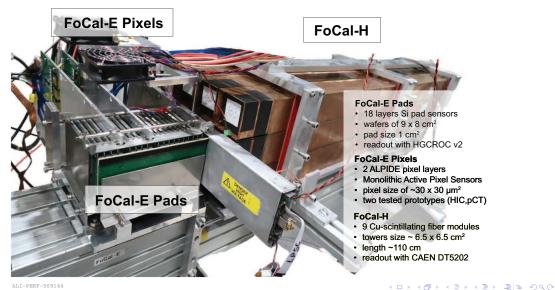



5/13

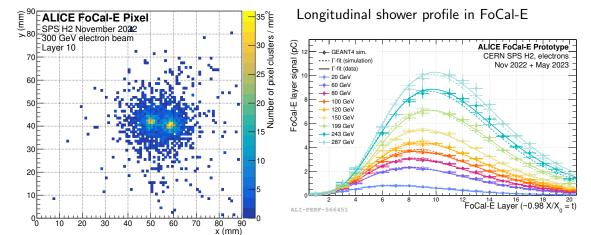
EL SQA

- Nuclear modification of the gluon density at small-x
 - isolated photons in pp and pPb collisions.
- Explore non-linear QCD evolution in regime of saturated gluons.
 - isolated photons.
 - measurements of forward azimuthal correlations: $(\pi^0, \gamma_{iso}, jet)_{trigg} \times (\pi^0, jet)_{assoc}$.
 - Quarkonia in UPC.
- More details on the FOCAL physics case can be found here:

Physics of the ALICE Forward Calorimeter upgrade.

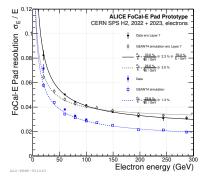


5/13

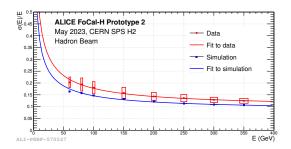

EL SQA

Testbeam performance

Testbeam performance FOCAL-E


Shower separation in FoCal-E pixels

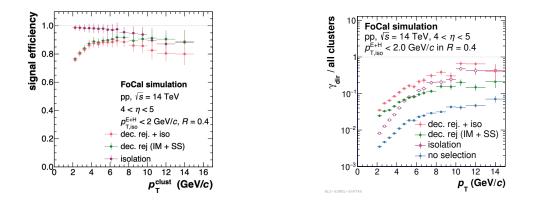
ALI-PERF-529586


Testbeam performance

Energy resolution FoCal-E

- Energy resolution of FoCal-E studied using electron beam from SPS.
- energy resolution < 4% for high energies and described by sim.

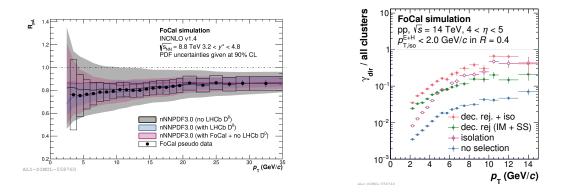
Energy resolution FoCal-H



• energy resolution $\approx 10\%$ at high energies.

< □ > < @ >

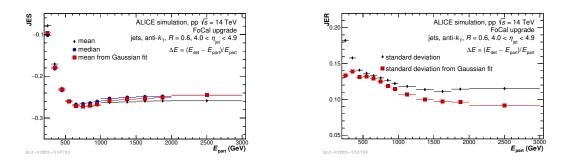
1 3 1 4 3 1 3 1 3 1 4 4 5 1 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1


Isolated photons performance

• Cluster selection on isolation, invariant mass, and shower shape, decreases the efficiency but allows for a purity of 70% at high p_T .

ELE DOG

Isolated photons performance

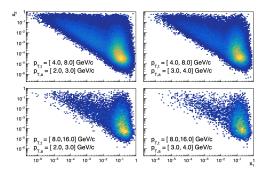


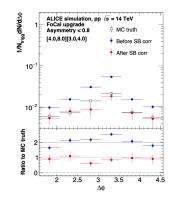
- Cluster selection on isolation, invariant mass, and shower shape, decreases the efficiency but allows for a purity of 70% at high p_T .
- FOCAL photon *R*_{pPb} significantly improves the NNPDF3 gluon PDF (without LHCb charm) by a factor 2.

A B A B A B B B A A A

Image: A math

Jet reconstruction performance

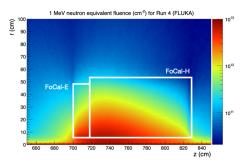

- Jets in FOCAL are reconstructed from showers in FOCAL-E and FOCAL-H.
- The jet performance is studied through JES and JER which are the mean and standard deviation of Δ*E*.
- Very good performance of jet reconstruction.

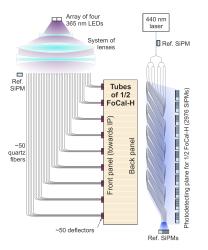

< □ > < 凸

토▶★토▶ 토|님 ���

π^0 - π^0 correlations

- Study of correlations in forward region can probe saturation effect and can help understand the low-x.
- π^0 candidates are reconstructed from clusters pairs in FOCAL-E with $m_{\gamma\gamma}=m_{\pi^0}$.
- Untrivial and significant correlated background subtracted using side-band method.




11/13

28/11/2024

- Construct the FOCAL-H with off-the shelf hardware components with SiPM-based photon readout.
- Harsh running conditions impose strict limitations on the choice of photosensors.
- The SiPMs will not survive these conditions:
 - Redesign frontend such that SiPMs are moved away from region of highest radiation.
 - $\bullet\,$ Cool the SiPMs to -40°C

- Construct the FOCAL-H with off-the shelf hardware components with SiPM-based photon readout.
- Harsh running conditions impose strict limitations on the choice of photosensors.
- The SiPMs will not survive these conditions:
 - Redesign frontend such that SiPMs are moved away from region of highest radiation.
 - $\bullet~$ Cool the SiPMs to -40 $^{\circ}C$
- Development of the concept for the FoCal-H photo calibration system and specific characterization of fibers.

ELE DOG

Summary

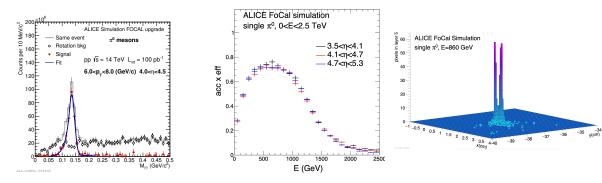
- The FoCal detector is a planned calorimeter for the ALICE experiment for Run 4, covering forward rapidities $3.2 < \eta < 5.8$.
- FOCAL can measure several observables: photons, neutral hadrons, jets, and their correlations
- The focus of the FoCal physics program is the study of the low-*x* structure of matter and the search for evidence of non-linear QCD evolution.

More details can be found:

- FOCAL Letter of Intent: CERN-LHCC-2020-009
- Physics of the ALICE Forward Calorimeter upgrade: ALICE-PUBLIC-2023-001
- FoCal performance public note: ALICE-PUBLIC-2023-004
- Test beam paper of FoCal prototypes arXiv:2311.07413
- Technical Design Report: CERN-LHCC-2024-004

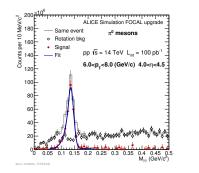
N A ∃ N ∃ | = 1 ≤ N Q A

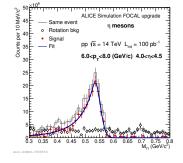
Backup

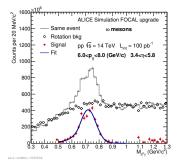

Hadi Hassan (JYU)

ALICE FOCAL upgrade

 ・ロト < 団ト < 団ト < 団ト < ロト 28/11/2024

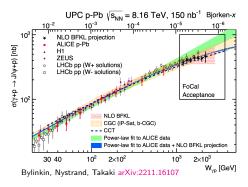

Meson reconstruction

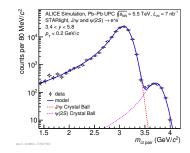

- Neutral mesons decaying fully into photons or electrons can be reconstructed using EM showers in FoCal-E.
 - Most abundant: $\pi^{\rm 0},\,\eta,\,{\rm and}\,\,\omega$
- Vector mesons decaying via di-electrons can also be reconstructed.



Meson reconstruction

- Neutral mesons decaying fully into photons or electrons can be reconstructed using EM showers in FoCal-E.
 - Most abundant: π^0 , η , and ω
- Vector mesons decaying via di-electrons can also be reconstructed.

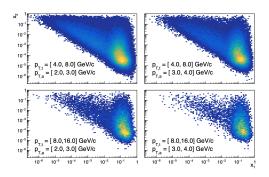


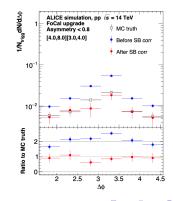


28/11/2024

Meson reconstruction

- Neutral mesons decaying fully into photons or electrons can be reconstructed using EM showers in FoCal-E.
 - Most abundant: $\pi^{\rm 0},\,\eta,\,{\rm and}\,\,\omega$
- Vector mesons decaying via di-electrons can also be reconstructed.
- In addition to ${\mathsf J}/\psi$ and $\psi(2S)$ reconstruction in UPC.

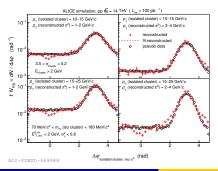


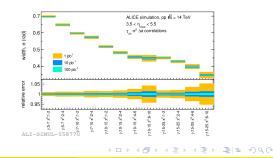


28/11/2024

Correlation measurements

- Study of correlations in forward region can probe saturation effect and can help understand the low-x.
- π^0 - π^0 correlations (Heidi Rytkönen):
 - π^0 candidates are reconstructed from clusters pairs in FOCAL-E with $m_{\gamma\gamma}=m_{\pi^0}$.
 - Untrivial and significant correlated background subtracted using side-band method.





EL SQA

Correlation measurements

- Study of correlations in forward region can probe saturation effect and can help understand the low-x.
- π^0 - π^0 correlations (Heidi Rytkönen):
 - π^0 candidates are reconstructed from clusters pairs in FOCAL-E with $m_{\gamma\gamma}=m_{\pi^0}$.
 - Untrivial and significant correlated background subtracted using side-band method.
- γ - π^0 correlations:
 - High precision in measuring the width of correlation functions as indicators of gluon density effects.

