

Shining Light on Saturated Gluons GlueSatLight

Heikki Mäntysaari

University of Jyväskylä Centre of Excellence in Quark Matter Finland

Particle Physics Days, Nov 28, 2024

HELSINKI INSTITUTE OF PHYSICS

Outline

1 QCD at high energies and densities

- 2 How to shine light on saturated gluons?
- 3 Snapshots of protons and nuclei at high energies
- 4 Towards precision level
- 5 Connections to heavy ion phenomenology

Proton structure at high energy

Experiments at HERA e + p collider (92–07): Deep Inelastic Scattering $e + p \rightarrow e + X$

 $Q^2 = -q^2$: photon virtuality $\sim 1/\text{length scale}$

Observation: proton is full of gluons!

 $x = Q^2/(2P \cdot q)$: fraction of the proton momentum carried by the quark or gluon

QCD at high energies

QCD is non-abelian \Rightarrow non-linear

- Gluons ($\sim A^{\mu}$) have self-couplings: $g \rightarrow gg$ increases density at low x
- Non-linear when g density large: $gg \rightarrow g$ balances $g \rightarrow gg$
- Effective theory at high energy: Color Glass Condensate (CGC)

When is non-linear QCD visible?

- Transverse size probed $\sim 1/Q^2$
- Number of gluons $xg(x, Q^2)$
- Proton transverse area πR_p^2
- QCD coupling strength α_s Non-linearities important when

$$\alpha_s x g(x,Q^2) \frac{1}{Q^2} \gtrsim \pi R_p^2$$

Pronounced in nuclei: $xg(x,Q^2)/\pi R_p^2 \sim A^{1/3}$

High-x/small-E

GlueSatLight

Outline

QCD at high energies and densities

2 How to shine light on saturated gluons?

③ Snapshots of protons and nuclei at high energies

4 Towards precision level

5 Connections to heavy ion phenomenology

"Standard" experimental access to high-density QCD at the LHC

No unambiguous signal of non-linearities seen so far. Look for densest possible systems!

p+A collisions

- Probe: proton (complex substructure)
- Target: heavy (dense) nucleus

Particle production in the *forward* (proton-going) direction

- Proton: $x_p \sim 1$
- Nucleus: $x_A \ll 1$

Access to small- x_A , but messy

Light in GlueSatLight

Ultra Peripheral Collisions

- Impact parameter $|\mathbf{B}| > 2R_A$: Hadronic interaction suppressed
- Probe: photon (elementary particle)
- Target: heavy (dense) nucleus

GlueSatLight

- $\gamma + A$ scattering at $W_{\gamma N} \sim \mathcal{O}(\text{TeV})$: Clean probe of gluon saturation & geometry at small-x and large-A
- Focus: exclusive vector meson production

EM field of the fast nucleus \sim quasi-real photon flux

Light in 2030s: Electron-Ion Collider (EIC)

Electron Ion Collider (EIC)

- \bullet Approved by the US DOE, data ~ 2032
- First e + A collider
- Polarized protons (and light nuclei)
- High luminosity $\mathcal{L}\sim 10^{34}\,\mathrm{cm}^{-2}\mathrm{s}^{-1}$

EIC physics program & requirements

- 3D imaging (luminosity)
- Proton spin (polarized beam)
- Saturation (large E and A)

CoE QM theory groups involved

ERC

FRC

Contraction of the second seco

Interaction via virtual photon exchange

- Kinematics known (measure e)
- Access different length scales \sim photon virtualities Q^2

Outline

QCD at high energies and densities

2 How to shine light on saturated gluons?

Snapshots of protons and nuclei at high energies

4) Towards precision level

5 Connections to heavy ion phenomenology

Non-perturbative input from structure function measurements

- Perturbative \sqrt{s} evolution: BK/JIMWLK Requires a non-perturbative input <u>with uncertainties</u>
- Necessary ingredient for all CGC calculations
- \bullet Cleanest observable: total $\gamma^*p \to X$ cross section

${\sf GlueSatLight}$

- Precision: NLO, finite- \sqrt{s} corrections
- \bullet Global analyses: include diffraction, $p+\mathrm{A},\ldots$
- Impact of future EIC data

Exclusive vector meson production at the EIC and in UPCs

Lowest order in perturbation theory: $\mathcal{A}_{\Omega} \sim i \int d^2 \mathbf{b} \, e^{-i\mathbf{b}\cdot \mathbf{\Delta}} \Psi^* \otimes N_{\Omega} \otimes \Psi_{\mathrm{J}/\psi}$ $\mathbf{O} \, \gamma^* \to q\bar{q}$: photon wave function Ψ (QED) $\mathbf{O} \, qq$ -target interaction: dipole amplitude N_{Ω} $\mathbf{O} \, q\bar{q} \to \mathrm{J}/\psi$: meson wave function $\Psi_{\mathrm{J}/\psi}$

Calculation of F_2 , $F_{2,D}$ similar

 Ω : target configuration Δ : J/ ψ transverse momentum r: $q\bar{q}$ transverse size b: $q\bar{q}$ center-of-mass z: long. momentum fraction

Diffractive scattering

- Theory: no net color charge transfer
- Experimental signature: rapidity gap (empty detector) around ${\rm J}/\psi$

${\bf b}$ and Δ Fourier conjugates: access to geometry!

Coherent and incoherent vector meson production

Coherent: target remains intact, initial state $|i\rangle = \text{final state } |f\rangle$ Good, Walker, Phys. Rev. 1960: $\frac{d\sigma}{d\Delta^2} \sim |\langle \mathcal{A} \rangle_{\Omega}|^2$ \Rightarrow Probe average interaction \Rightarrow average geometry

Coherent and incoherent vector meson production

Coherent: target remains intact, initial state $|i\rangle = \text{final state } |f\rangle$ Good, Walker, Phys. Rev. 1960: $\frac{d\sigma}{d\Delta^2} \sim |\langle \mathcal{A} \rangle_{\Omega}|^2$ \Rightarrow Probe average interaction \Rightarrow average geometry

Incoherent: $|i\rangle \neq |f\rangle$, target breaks up: $\frac{d\sigma}{d\Delta^2} \sim \left\langle |\mathcal{A}|^2 \right\rangle_{\Omega} - \left| \left\langle \mathcal{A} \right\rangle_{\Omega} \right|^2$ Variance \Rightarrow access to event-by-event fluctuations in the target structure

Proton shape from: $\gamma + p \rightarrow J/\psi + p$

HERA data can be described with large event-by-event fluctuations in the proton geometry

H.M, B. Schenke, PRL 117, 052301 (2016), PRD 94, 034042, H1: EPJC73, 2466, later many papers by different groups

Nuclear density profile from $Pb + Pb \rightarrow Pb + J/\psi$

 $\gamma+Pb$ at the LHC: very high density, saturation can modify the nuclear geometry

UPC data from LHC ($x = 6 \cdot 10^{-4}$, $W_{\gamma N} = 125$ GeV)

- Coherent $\gamma + Pb \rightarrow J/\psi + Pb$
- Saturation effects modify nuclear goemetry \Rightarrow Supported by the ALICE data
- \bullet Saturation: nucleus \approx black disc at the center

GlueSatLight

- Nucleon&nuclear (fluctuating) x-dependent geometry
- Nuclear modification to nucleon substructure fluctuations
- $\bullet~{\rm DIS}$ + LHC ${\rm J}/\psi$ data: probe saturation in global analyses
- Promote phenomenology to NLO accuracy

Outline

QCD at high energies and densities

- 2 How to shine light on saturated gluons?
- Snapshots of protons and nuclei at high energies
- 4 Towards precision level
- 6 Connections to heavy ion phenomenology

Gluon saturation at precision level

This talk so far: LO (but $\alpha_s \ln 1/x \sim O(1)$ resummed to all orders) CGC calculations are now entering the NLO era ($\alpha_s \ln 1/x \sim O(1)$, NLO = $\alpha_s^2 \ln 1/x$)

Factorization at small-x

$\mathrm{d}\sigma\sim$ Impact factor \otimes Wilson line correlator

Building blocks for NLO accuracy

Perturbative calculations at NLO accuracy need

- Impact factors (perturbative calculation)
- Perturbative energy evolution for Wilson lines
- Non-perturbative input from fits

Probe QCD in the high-density domain at precision level

Progress towards the NLO accuracy – our contributions so far Significant contributions from the CoE QM, for example

Impact factors at NLO

- Total cross section in $\gamma^* + A$ Beuf, Lappi, Paatelainen, Hänninen, 2017–2022
- Exclusive $\gamma^* + A \rightarrow V + A$ ($V = \rho, J/\psi, \Upsilon$) H.M, Penttala, 2021–2022
- Total diffractive $\gamma^* + A$ cross section Beuf, Lappi, H.M, Paatelainen, Penttala, 2024

Evolution equations at NLO

- First numerical solution Lappi, H.M, 2015
- $\bullet\,$ Initial condition from e+p data:

Hänninen, H.M, Paatelainen, Penttala 2023

Diagrammatic calculations using Light Cone Perturbation Theory

Examples for $q\bar{q}$ and $q\bar{q}g$ production

Towards NLO phenomenology

 First NLO calculations applied to HERA&LHC phenomenology (our speciality): Total γ + p cross section, exclusive J/ψ production, forward particle production in p+A

ERC project GlueSatLight

No single "smoking gun" for gluon saturation expected

- Probe gluon saturation by performing global analyses at NLO accuracy
- Apply these results to heavy ion phenomenology

Outline

QCD at high energies and densities

- 2 How to shine light on saturated gluons?
- Snapshots of protons and nuclei at high energies
- Towards precision level
- 5 Connections to heavy ion phenomenology

Heavy ion collisions

- High-E Pb+Pb collisions
- Goal: determine properties of the deconfined QCD matter Quark Gluon Plasma

- Multi-stage process
- Describing all stages + measurements: CoE in Quark Matter
- ERC project: 0th stage
 - = dense saturated nuclei before collision
 - \Rightarrow input to simulations

Initial state description from e+p in heavy ion collisions

LHC surprise

- Initially p+Pb considered as a baseline, too small system for collectively evolving QGP
- However, a large flow was observed, comparable to Pb+Pb measurements

Same hydro framework failed with p+Pb...

Initial state description from e+p in heavy ion collisions

LHC surprise

- Initially p+Pb considered as a baseline, too small system for collectively evolving QGP
- However, a large flow was observed, comparable to Pb+Pb measurements

Same hydro framework failed with p+Pb...

... However, a round proton was assumed, and nature is quantum mechanical (more complicated)

GlueSatLight

Initial state description from e+p in heavy ion collisions

Geometry from DIS

Can use e + p / e + A to constrain the proton/nuclear fluctuating geometry

${\sf GlueSatLight}$

- JIMWLK evolution in IP-Glasma
- Input from DIS/global analyses
- Nucleon substructure in [deformed] nuclei
- Effect on the extraction of QGP properties

Proton geometry from HERA \Rightarrow 1 HC flow measurements \checkmark

H.M, Schenke, Shen, Tribedy, PLB 2017

/₂{2}

Example of recent developments

Recent development

arXiv:2409.19064 [hep-ph]: initial state with (approximative) JIMWLK evolution in IP-Glasma, show that LHC Xe+Xe measurements are sensitive to deformed Xe geometry at small-x

Heikki Mäntysaari (JYU)

Conclusions: GlueSatLight

(discover)

(quantify)

(apply)

Background: path to gluon saturation

- $\bullet\,$ Soft gluon emission is favored in QCD $\Rightarrow\,$ protons and nuclei dense at high energy
- $\bullet\,$ Eventually $g \to gg$ and $gg \to g$ balance: new state of matter with non-linear dynamics

Open questions answered in this project

- Is non-linear QCD dynamics visible in current collider energies?
- How do these saturation effects modify the nuclear high-energy structure?
- What is the effect on the extraction of the Quark Gluon Plasma properties?

Backups

Saturation effects: coherent $\gamma + A \rightarrow J/\psi + A$

H.M, Salazar, Schenke, arXiv:2312.04194

GlueSatLight

Geometry from exclusive scattering: $Au + Au \rightarrow Au + Au + \rho^0$

Total transverse momentum transfer: conjugate to distance \Rightarrow access to geometry

Heikki Mäntysaari (JYU)