

Shining Light on Saturated Gluons GlueSatLight

Heikki Mäntysaari

University of Jyväskylä Centre of Excellence in Quark Matter Finland

Particle Physics Days, Nov 28, 2024

HELSINKI INSTITUTE OF PHYSICS

Outline

1 [QCD at high energies and densities](#page-1-0)

- 2 [How to shine light on saturated gluons?](#page-4-0)
- 3 [Snapshots of protons and nuclei at high energies](#page-8-0)

[Towards precision level](#page-15-0)

5 [Connections to heavy ion phenomenology](#page-19-0)

Proton structure at high energy

Experiments at HERA $e + p$ collider (92–07): Deep Inelastic Scattering $e + p \rightarrow e + X$

 $Q^2=-q^2$: photon virtuality $\sim 1/$ length scale

Observation: proton is full of gluons!

 $x = Q^2/(2P \cdot q)$: fraction of the proton momentum carried by the quark or gluon

QCD at high energies

QCD is non-abelian \Rightarrow non-linear

$$
\mathcal{L} = -\frac{1}{2} \underbrace{F^{\mu\nu} F_{\mu\nu}}_{\sim (A^{\mu})^3, (A^{\mu})^4} + \underbrace{\overline{\psi} (\overline{i} \cancel{D}}_{\sim A^{\mu}} - m) \psi
$$

- Gluons $({\sim A^{\mu}})$ have self-couplings: $g \rightarrow g\bar{g}$ increases density at low x
- \bullet Non-linear when q density large: $q\bar{q} \rightarrow q$ balances $q \rightarrow qq$
- Effective theory at high energy: Color Glass Condensate (CGC)

When is non-linear QCD visible?

- \bullet Transverse size probed $\sim 1/Q^2$
- Number of gluons $xg(x,Q^2)$
- Proton transverse area πR_p^2
- QCD coupling strength α_s

Non-linearities important when

$$
\alpha_s xg(x,Q^2)\frac{1}{Q^2}\gtrsim \pi R_p^2
$$

Pronounced in nuclei: $xg(x,Q^2)/\pi R_p^2 \sim A^{1/3}$

High- x /small- E

evolution and the evolution of the

Outline

1 QCD at high energies and densities

2 [How to shine light on saturated gluons?](#page-4-0)

3 [Snapshots of protons and nuclei at high energies](#page-8-0)

[Towards precision level](#page-15-0)

5 [Connections to heavy ion phenomenology](#page-19-0)

"Standard" experimental access to high-density QCD at the LHC

No unambiguous signal of non-linearities seen so far. Look for densest possible systems!

p+A collisions

- Probe: proton (complex substructure)
-

• Target: heavy (dense) nucleus Particle production in the forward (proton-going) direction

- Proton: $x_n \sim 1$
- Nucleus: $x_A \ll 1$

Access to small- x_A , but messy

Light in GlueSatLight

Ultra Peripheral Collisions

- Impact parameter $|\mathbf{B}| > 2R_A$: \bullet impact parameter $|\mathbf{D}| > 2n_A$:
Hadronic interaction suppressed
- Probe: photon (elementary particle)
- **Target:** heavy (dense) nucleus example Γ are second from the suppress photon flux nucleus photon

- $\gamma + A$ scattering at $W_{\gamma N} \sim \mathcal{O}(\text{TeV})$: Clean probe of gluon saturation & geometry at small- x and large- A
- **•** Focus: exclusive vector meson production

 \sim quasi-real photon flux EM field of the fast nucleus

J. Nystrand et al, nucl-ex/0502005

Light in 2030s: Electron-Ion Collider (EIC)

Electron Ion Collider (EIC)

- \bullet Approved by the US DOE, data \sim 2032
- First $e + A$ collider
- Polarized protons (and light nuclei)
- High luminosity $\mathcal{L} \sim 10^{34} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$

EIC physics program & requirements

- 3D imaging (luminosity) ERC
- Proton spin (polarized beam)
- Saturation (large E and A) ERC
- CoE QM theory groups involved

Interaction via virtual photon exchange

- Kinematics known (measure e)
- \bullet Access different length scales \sim photon virtualities Q^2

Outline

- **1 QCD** at high energies and densities
- 2 [How to shine light on saturated gluons?](#page-4-0)
- 3 [Snapshots of protons and nuclei at high energies](#page-8-0)
- **[Towards precision level](#page-15-0)**
- 5 [Connections to heavy ion phenomenology](#page-19-0)

Non-perturbative input from structure function measurements

- Perturbative \sqrt{s} evolution: BK/JIMWLK Requires a non-perturbative input with uncertainties
- Necessary ingredient for all CGC calculations
- Cleanest observable: total $\gamma^* p \to X$ cross section

GlueSatLight

- Precision: NLO, finite- \sqrt{s} corrections
- Global analyses: include diffraction, $p + A$,...
- Impact of future EIC data

Exclusive vector meson production at the EIC and in UPCs

Lowest order in perturbation theory: $\mathcal{A}_\Omega\sim i\int\mathrm{d}^2\mathbf{b}\,e^{-i\mathbf{b}\cdot\mathbf{\Delta}}\Psi^*\otimes N_\Omega\otimes\Psi_{\mathrm{J}/\psi}$ $\bullet \ \gamma^{*} \rightarrow q \bar{q}$: photon wave function Ψ (QED) \bullet qq-target interaction: dipole amplitude N_{Ω} \bullet $q\bar{q} \rightarrow J/\psi$: meson wave function $\Psi_{J/\psi}$

Calculation of F_2 , $F_{2,D}$ similar

 Ω : target configuration Δ : J/ ψ transverse momentum r: $q\bar{q}$ transverse size b: $q\bar{q}$ center-of-mass z: long. momentum fraction

Diffractive scattering

- Theory: no net color charge transfer
- Experimental signature: rapidity gap (empty detector) around J/ψ

b and Δ Fourier conjugates: access to geometry!

Coherent and incoherent vector meson production

Coherent: target remains intact, initial state $|i\rangle =$ final state $|f\rangle$ \Rightarrow Probe average interaction \Rightarrow average geometry Good, Walker, Phys. Rev. 1960: $\frac{d\sigma}{d\mathbf{\Delta}^2} \sim |\langle A \rangle_{\Omega}|^2$

Coherent and incoherent vector meson production

Coherent: target remains intact, initial state $|i\rangle =$ final state $|f\rangle$ \Rightarrow Probe average interaction \Rightarrow average geometry Good, Walker, Phys. Rev. 1960: $\frac{d\sigma}{d\mathbf{\Delta}^2} \sim |\langle A \rangle_{\Omega}|^2$

Incoherent: $|i\rangle\neq|f\rangle$, target breaks up: $\frac{\mathrm{d}\sigma}{\mathrm{d}\mathbf{\Delta}^2}\sim\left\langle |\mathcal{A}|^2\right\rangle_{\Omega}-\left|\left\langle \mathcal{A}|\right\rangle _{\Omega}\right\rangle _{\Omega}$ Variance \Rightarrow access to event-by-event fluctuations in the target structure $\left\langle |\mathcal{A}|^2 \right\rangle$ Ω ⁻ \overline{a} A \setminus Ω 2

Proton shape from: $\gamma + p \rightarrow J/\psi + p$

HERA data can be described with large event-by-event fluctuations in the proton geometry

H.M, B. Schenke, PRL 117, 052301 (2016), PRD 94, 034042, H1: EPJC73, 2466, later many papers by different groups

Nuclear density profile from $Pb + Pb \rightarrow Pb + Pb + J/\psi$

 γ + Pb at the LHC: very high density, saturation can modify the nuclear geometry

UPC data from LHC $(x = 6 \cdot 10^{-4}, W_{\gamma N} = 125 \text{ GeV})$

- Coherent $\gamma + Pb \rightarrow J/\psi + Pb$
- Saturation effects modify nuclear goemetry \Rightarrow Supported by the ALICE data
- Saturation: nucleus ≈ black disc at the center

GlueSatLight

- Nucleon&nuclear (fluctuating) x -dependent geometry
- Nuclear modification to nucleon substructure fluctuations
- DIS + LHC J/ψ data: probe saturation in global analyses
- Promote phenomenology to NLO accuracy

Outline

1 QCD at high energies and densities

- 2 [How to shine light on saturated gluons?](#page-4-0)
- 3 [Snapshots of protons and nuclei at high energies](#page-8-0)

4 [Towards precision level](#page-15-0)

5 [Connections to heavy ion phenomenology](#page-19-0)

Gluon saturation at precision level

This talk so far: LO (but $\alpha_s \ln 1/x \sim \mathcal{O}(1)$ resummed to all orders) CGC calculations are now entering the NLO era $(\alpha_s \ln 1/x \sim \mathcal{O}(1)$, NLO $=\alpha_s^2 \ln 1/x)$

Factorization at small- x

$d\sigma \sim$ Impact factor \otimes Wilson line correlator

Building blocks for NLO accuracy

Perturbative calculations at NLO accuracy need

- Impact factors (perturbative calculation)
- Perturbative energy evolution for Wilson lines
- Non-perturbative input from fits

Probe QCD in the high-density domain at precision level

Progress towards the NLO accuracy – our contributions so far Significant contributions from the CoE QM, for example

Impact factors at NLO

- Total cross section in γ^*+A Beuf, Lappi, Paatelainen, Hänninen, 2017–2022
- Exclusive $\gamma^* + A \rightarrow V + A$ $(V = \rho, J/\psi, \Upsilon)$ H.M, Penttala, 2021–2022
- Total diffractive γ^*+A cross section Beuf, Lappi, H.M, Paatelainen, Penttala, 2024

Evolution equations at NLO

- **•** First numerical solution Lappi, H.M. 2015
- Initial condition from $e + p$ data:

Hänninen, H.M, Paatelainen, Penttala 2023

Diagrammatic calculations using Light Cone Perturbation Theory

Examples for $q\bar{q}$ and $q\bar{q}q$ production

Towards NLO phenomenology 4

 \bullet First NLO calculations applied to HERA&LHC phenomenology (our speciality): Total $\gamma+p$ cross sectio Total $\gamma + p$ cross section, exclusive J/ψ production, forward particle production in p+A *p* + ! *p* + J*/ p* + ! *p* + J*/*

Fit 1 inclusive *Y*0*,*BK*,* 0*,*BK = 4*.*61 *Y*0*,*BK*,* 0*,*BK = 0*.*00 ERC project GlueSatLight

No single "smoking gun" for gluon saturation expected $\mathcal{L} = \mathcal{L}$

- o single sinoking gun for giuon saturation expected
• Probe gluon saturation by performing global analyses at NLO accuracy
- 0.10 • Apply these results to heavy ion phenomenology

 $\overline{}$

0.05

10¹

we show in Appendix. A, the overall normalization de-

 $f_{\rm eff}$ amplitude at small dipole size can have a dramatic e↵ect, even rendering the (parton-level) cross section negative if the dipole amplitude vanishes faster than r² r? as discussed in Sec. III and in Ref. [62].

We note that in Ref. [46] more fits than the four that we use in Figs. 2 are reported. We will further demonstrate \mathcal{L}

µ = 8p?, and the central lines is obtained with µ = 4p?. The statistical and systematic uncertainties for the LHCb data are

Outline

1 QCD at high energies and densities

- 2 [How to shine light on saturated gluons?](#page-4-0)
- 3 [Snapshots of protons and nuclei at high energies](#page-8-0)

[Towards precision level](#page-15-0)

5 [Connections to heavy ion phenomenology](#page-19-0)

Heavy ion collisions

- \bullet High-E Pb+Pb collisions
- Goal: determine properties of the deconfined QCD matter Quark Gluon Plasma

- Multi-stage process
- \bullet Describing all stages $+$ measurements: where ensemble of nucleons in Quark Matter
- ϵ . 2 ϵ 2 ϵ parton collisions happening (hydrodynamic evolutions) and de-configurate (hydrodynamic evolutions) natter $\qquad \bullet$ ERC project: 0th stage
- $=$ dense saturated nuclei before collision
- \Rightarrow input to simulations

Initial state description from $e+p$ in heavy ion collisions

LHC surprise

- \bullet Initially p+Pb considered as a baseline, too small system for collectively evolving QGP
- \bullet However, a large flow was observed, comparable to Pb+Pb measurements

Same hydro framework failed with $p+Pb...$

Initial state description from $e+p$ in heavy ion collisions

LHC surprise

- \bullet Initially p+Pb considered as a baseline, too small system for collectively evolving QGP
- \bullet However, a large flow was observed, comparable to Pb+Pb measurements

Same hydro framework failed with $p+Pb...$

. . . However, a round proton was assumed, and nature is quantum mechanical (more complicated)

Initial state description from $e+p$ in heavy ion collisions

Geometry from DIS

Can use $e + p / e + A$ to constrain the proton/nuclear fluctuating geometry

GlueSatLight

- IIMWI K evolution in IP-Glasma
- \bullet Input from DIS/global analyses
- Nucleon substructure in [deformed] nuclei
- Effect on the extraction of QGP properties

 \mathcal{O}^2

Recent development

show that LHC Xe $+$ Xe measurements are sensitive to deformed Xe geometry at small- x arXiv:2409.19064 [hep-ph]: initial state with (approximative) JIMWLK evolution in IP-Glasma, $\frac{\mathsf{sh}}{\mathsf{h}}$ /e
ght

Heikki M¨antysaari (JYU) [GlueSatLight](#page-0-0) Nov 28, 2024 23 / 24

 \mathcal{L}

Conclusions: GlueSatLight

Background: path to gluon saturation

- Soft gluon emission is favored in QCD \Rightarrow protons and nuclei dense at high energy
- Eventually $g \rightarrow gg$ and $gg \rightarrow g$ balance: new state of matter with non-linear dynamics at the RHIC, in Au-Au collisions at center-of-mass energy of psNN = 200 GeV (and an energy scan

Open questions answered in this project

- Is non-linear QCD dynamics visible in current collider energies? $\frac{1}{\pi}$ are related to the initial state) and the initial wave function $\frac{1}{\pi}$ different to the one of protons, which can generate different multi-parton interactions (MPI) during (MP
- How do these saturation effects modify the nuclear high-energy structure? \qquad \qquad (quantify) $\|\;$
- What is the effect on the extraction of the Quark Gluon Plasma properties? $\qquad \quad \text{(apply)} \,|\,$ used to infer the properties of the QGP medium generated in the collision.

at lower energies down to psNN = 7.7 GeV) and at the LHC, with Pb–Pb collisions at psNN = 2.76 with respect to pp collisions, if AA collisions were just an ensemble of pp or pn or nn collisions. Also, pA collisions have their interest since they are sensitive to "cold nuclear matter effects" present

Backups

Saturation effects: coherent $\gamma + A \rightarrow J/\psi + A$

H.M, Salazar, Schenke, arXiv:2312.04194

Geometry from exclusive scattering: $Au + Au \rightarrow Au + Au + \rho^0$

Total transverse momentum transfer: conjugate to distance \Rightarrow access to geometry

Figure 8: *dialitysaari (JYU)* and 1n1n events in Annual [GlueSatLight](#page-0-0) Nov 2010 and 1n1n events (*annual 27 / 24* / 24 / 27 / 24 / 27 / 24 / 27 / 24 / 27 / 24 / 27 / 24 / 27 / 24 / 27 / 24 / 27 / 24 / 27 / 24 / 25 / 25 / 26 \mathbf{r} circles). The filled bands show the sum in \mathbf{r} all systematic uncertainties listed in Tab. \mathbf{r}