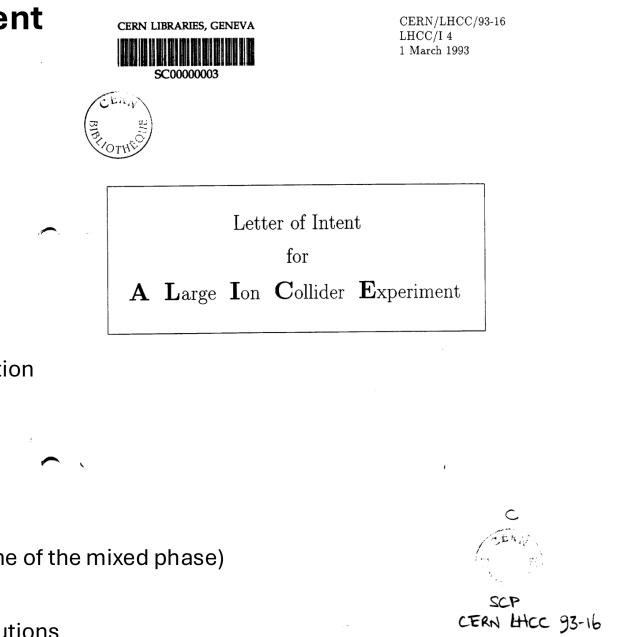


Future heavy ion experiment ALICE3

Sami Räsänen Particle Physics Days in Lammi 28th November 2024

Relativistic heavy ion collisions – QGP in laboratory

ALICE – A Large Ion Collider Experiment

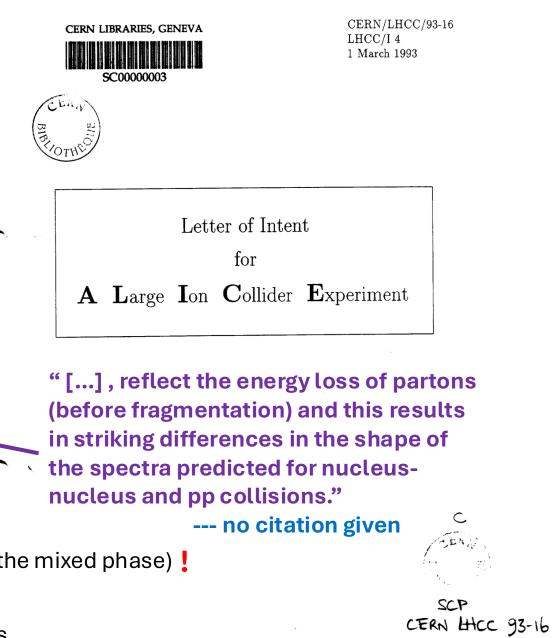

- Letter of Intent submitted 1993
- Finland joined ALICE 1998

Physics program as presented in 1993:

- 1) Initial conditions of heavy ion collisions
 - global event features, $N_{\rm part}$
 - produced energy density
- 2) Quark-gluon plasma (QGP)
 - -direct photons and thermal electromagnetic radiation
 - energy loss of partons at QGP
 - J/ ψ probing the deconfinement

3) Phase transition to QGP

- strangeness production
- multiplicity fluctuations
- particle interferometry (to probe the expansion time of the mixed phase)
- 4) Hadronic matter
 - particle ratios (chemical composition), $p_{\rm T}$ –distributions
 - freeze-out radius of the hadronic fireball



ALICE – A Large Ion Collider Experiment

- Letter of Intent submitted 1993
- Finland joined ALICE 1998

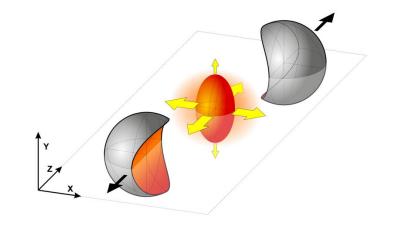
Physics program presented in 1993:

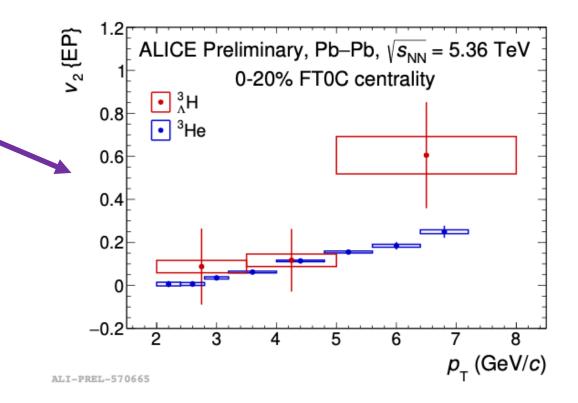
- 1) Initial conditions of heavy ion collisions
 - global event features, N_{part}
 - produced energy density
- 2) Quark-gluon plasma (QGP)
 - -direct photons and thermal electromagnetic radiation
 - energy loss of partons at QGP ! <
 - J/ ψ probing the deconfinement
- 3) Phase transition to QGP
 - strangeness production
 - multiplicity fluctuations
 - particle interferometry (to probe the expansion time of the mixed phase)
- 4) Hadronic matter
 - particle ratios (chemical composition), $p_{\rm T}$ –distributions
 - freeze-out radius of the hadronic fireball

Long Shutdown 2 (LS2) upgrades:

ALICE specialty – non-triggerable observables:

- Quark-medium interactions via measurements on heavy flavoured hadrons down to low momenta
- Disassociation and regeneration via measurements of charmonium states
- Medium evolution via thermal photons and dileptons
- Production and degree of thermalization of light and hyper nuclei


Based on physics targets:

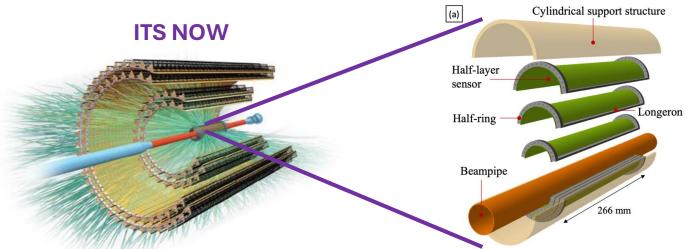

Keep old:

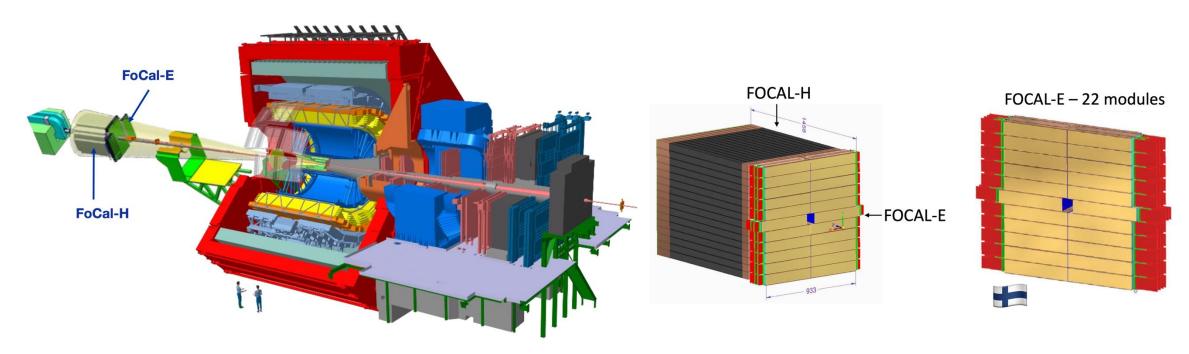
- Tracking down to low momenta
- Particle identification over large momentum range

Bring something new:

- Continuous readout of detectors
- Large minimum bias (MB) data set with low pileup

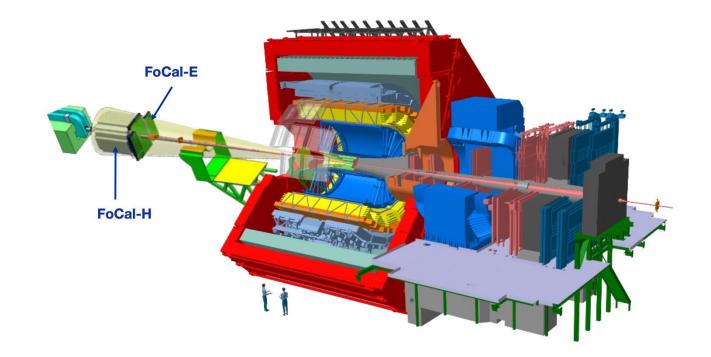
In Run4!

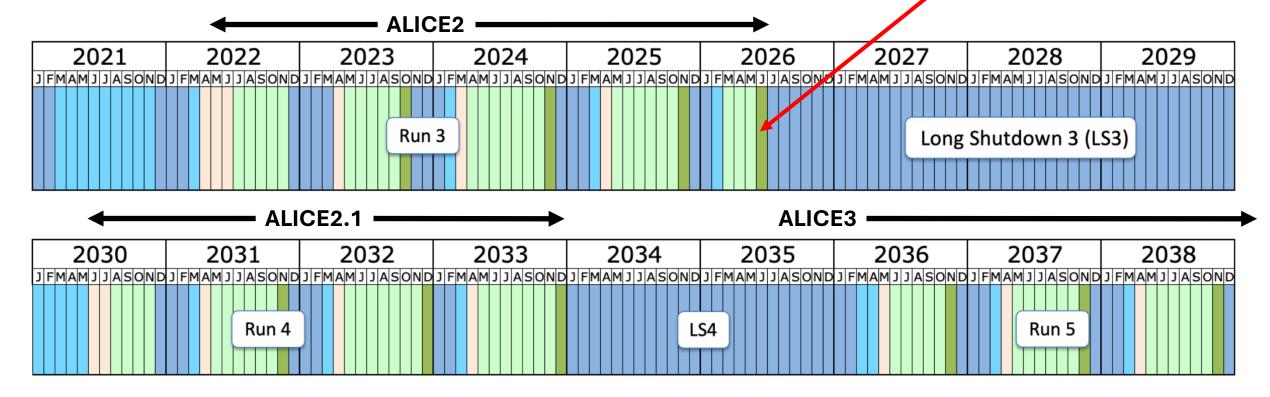

LS3 Upgrades – FoCal and ITS3


New vertex detector ITS3

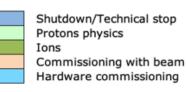
- improve secondary vertexing and pointing resolution

New forward calorimeter (FoCal)


- physics of gluon saturation


Future upgrades of ALICE:

- ALICE1
 - what we had in Run1+2
- ALICE2
 - present setup
 - Run3, years 2022-2026
 - refurbish subsystems in LS3
- ALICE2.1
 - Run4, years 2030-2033
 - add forward calorimeter FoCal and new vertex detector ITS3
- ALICE3
 - Run5, years 2036-2041
 - new experiment!



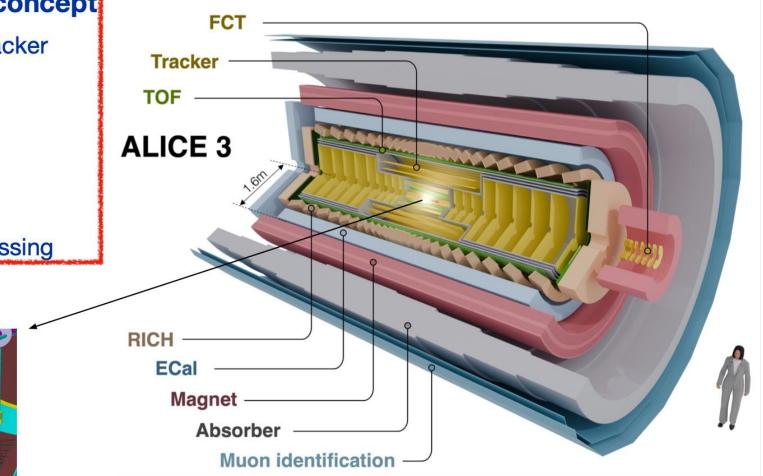
Updated LHC schedule (October 2024):

HI here, but not 2030

	2039						2040								2041																											
J	F	=	Μ	A	1	٩	J	J	I,	A	S	C	DN	1	D	J	F	N	И	A	Μ	נ	I,	נ	A	S	0	Ν	ID	J	F	Μ	A	Μ	נו	J	A	1	S	0	Ν	D
														E	Y	E	TS	5																								

LS3 start 7/2026 → +7 months Run4 starts 1/2030 → +12 months Run 5 & Run 6 combined → LS5 cancelled, replaced by extended year-end technical stop

(EYETS)


12/2041 = end of the HL-LHC → FCC-ee 2045-2048, FCC-pp ~2070-2075 (?)

ALICE3 – Letter of Intent

Novel and innovative detector concept

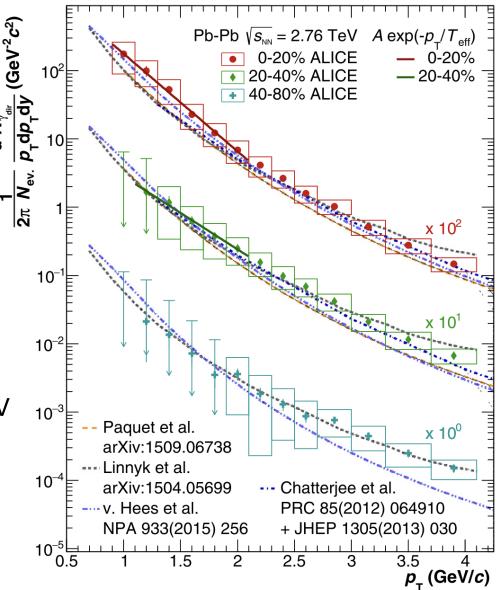
- Compact and lightweight all-silicon tracker
- Retractable vertex detector
- Extensive particle identification
- Large acceptance
- Superconducting magnet system
- Continuous read-out and online processing

cm

EM radiation – thermal photons:

Mean free path of photons and electrons ~100 fm \rightarrow leave interaction region without further interactions

(yield) ~
$$\int_{4-\text{volume}}(\text{emission rate})$$


ALICE: inverse slope $\sim e^{-p_T/T}$, $T \approx 297 \pm 12^{stat} \pm 41^{sys}$ MeV, An effective temperature reflecting evolution over the whole fireball.

Detailed hydrodynamical simulations:

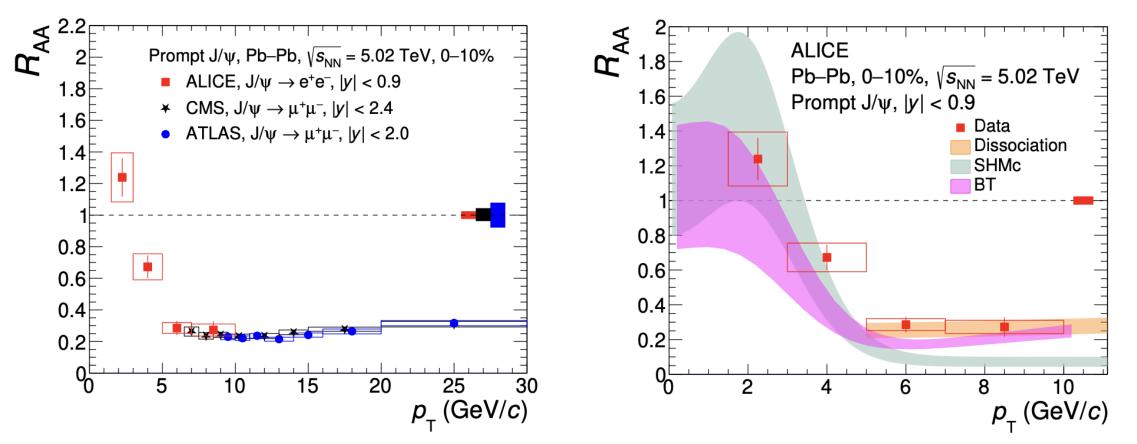
- Initial temperature at center of the fireball T_{max} = 345-740 MeV (large spread due to assumption of initial time)
- Average temperature theoretically a bit "cumbersome", depends on choices
- Photons are blue shifted by flow \rightarrow affects interpretation

This result from ALICE1

ALICE3 – Temperature evolution of QGP

/N

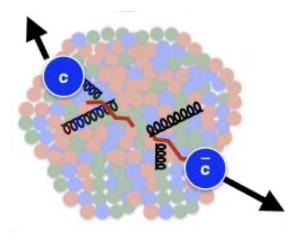
Dilepton mass spectrum:


- mass window dominated by the thermal dileptons
- slope of the mass spectrum
 ⇔ temperature
- invariant mass
 → better access to T
- binning in dilepton pair p_T
 ⇔ access to time

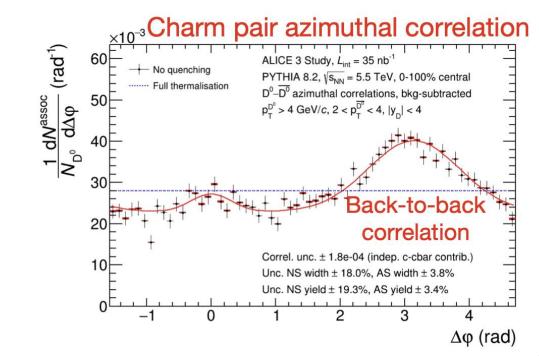
Gimmick: Precision electron identification

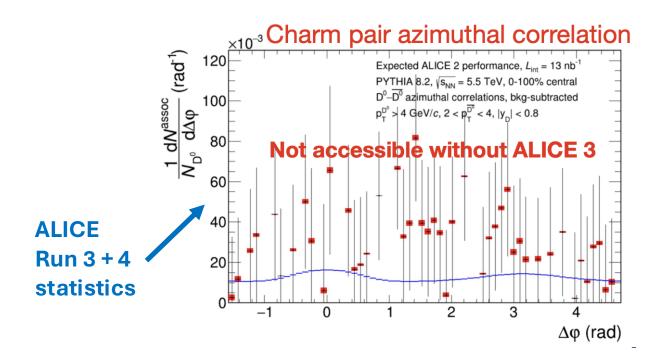
Heavy quarks at the QGP medium:

ALICE, JHEP02 (2024) 066

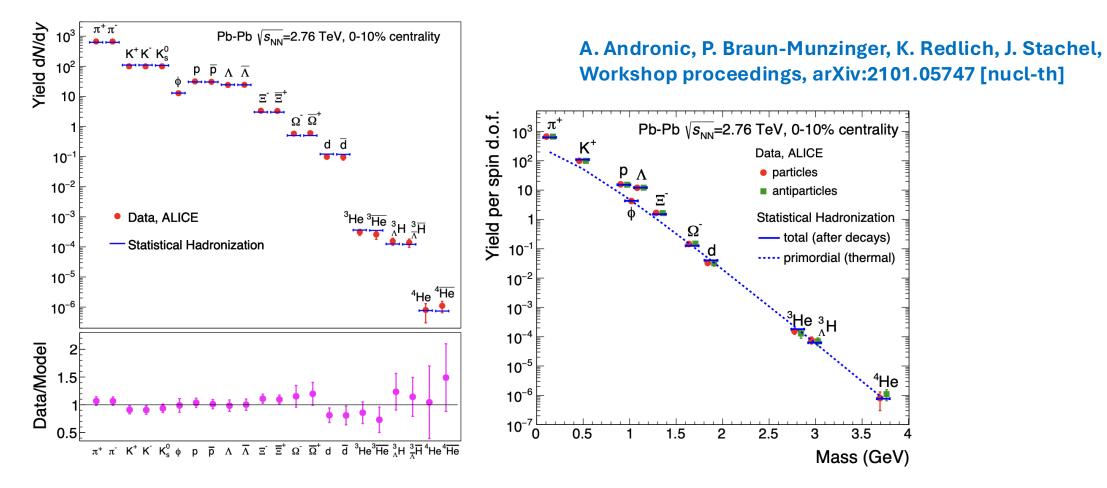

Dissociation = melting of bound charm states due to Debye colour screening SHMc = statistical hadronization model with charm

BT = Boltzmann transport model, includes dissociation and regeneration in medium


These results ALICE1 \rightarrow ALICE2 much better statistics

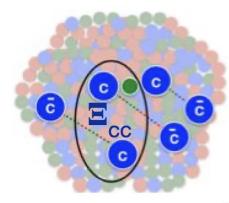

ALICE3 – two-particle correlations with charm

- Charm diffusion in QGP with DD-correlations
- Degree of thermalization of charm
- → Gimmick: Large acceptance, PID, high-rate example: D⁺ → K $\pi\pi$, D_s → KKp

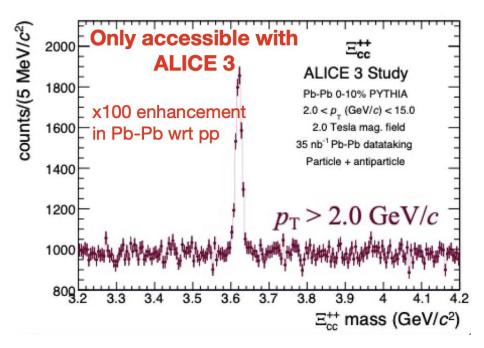


ALICE 3 LoI, CERN-LHCC-2022-009

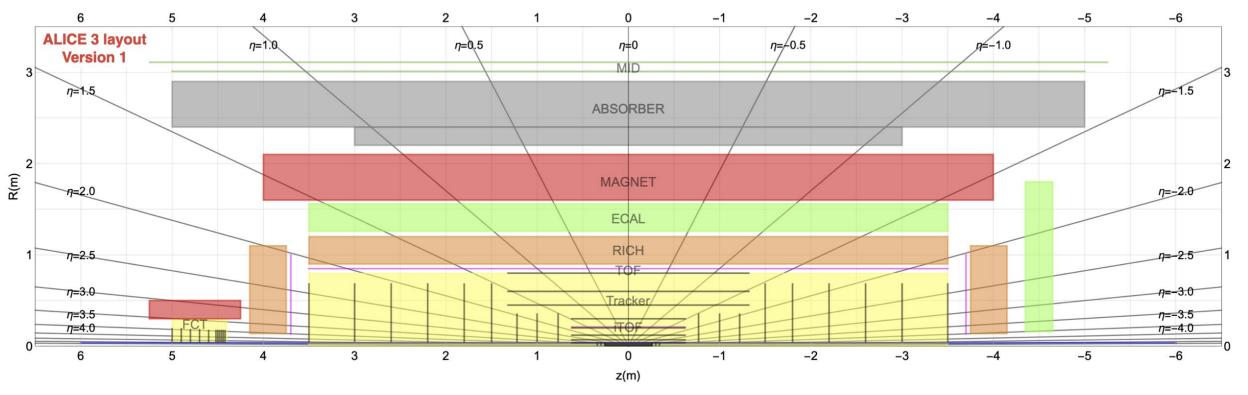
Thermal models – enhancement of heavy states:

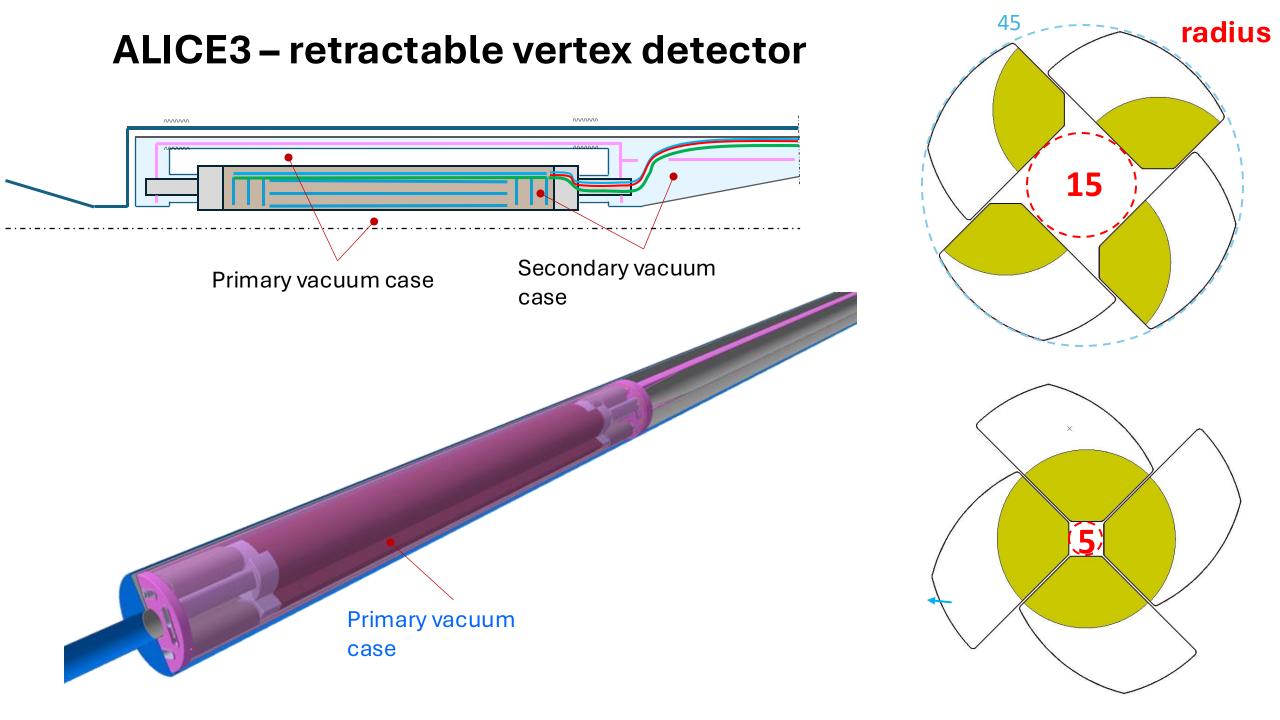

- Statistical hadronization model (SHM) describes observed yields well
- IF charm quarks are thermalized, SHM predicts very large enhancement of multiply charmed states compared to fragmentation based hadronization

ALICE3 – studies on hadronization


Thermal models predict very large enhancements for yields of the multi-charmed hadrons

→ Gimmick: all above + "strangeness tracking"


y (cm) ALICE 3 Full Simulation 100 y (cm ALICE 3 Full Simulation pp √s_{NN} = 14 TeV pp vs_{NN} = 14 TeV 6 7.0 cm • 3.75 cm • 50 2.5 cm 2 / 1.2 cm r = 0.5 cm • 0 0 -50 6 x (cm) -100-50 50 100 -1000 6/17 x (cm)

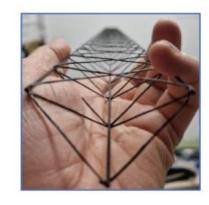

ALICE 3 LoI, CERN-LHCC-2022-00

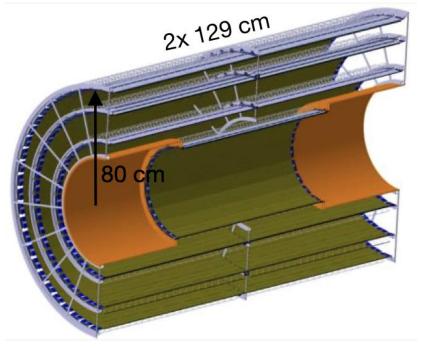
ALICE3 – a reference detector that can do it all

- A large acceptance $|\eta| < 4$ and compact radius detector (length |z| < 5 m, R = 3 m)
- New superconducting 2 T magnet, vertex detector inside the beam pipe
- Particle identification = time of flight (TOF) + ring-imaging Cherenkov detector (RHIC) + electromagnetic calorimeter (ECAL) + muon identification (MID)
- Fast, silicon only technology, similar readout scheme as in ALICE2
 - \rightarrow pp collision rate 24 MHz (up to 50x more) and Pb-Pb rate ~100 kHz (x2 up)

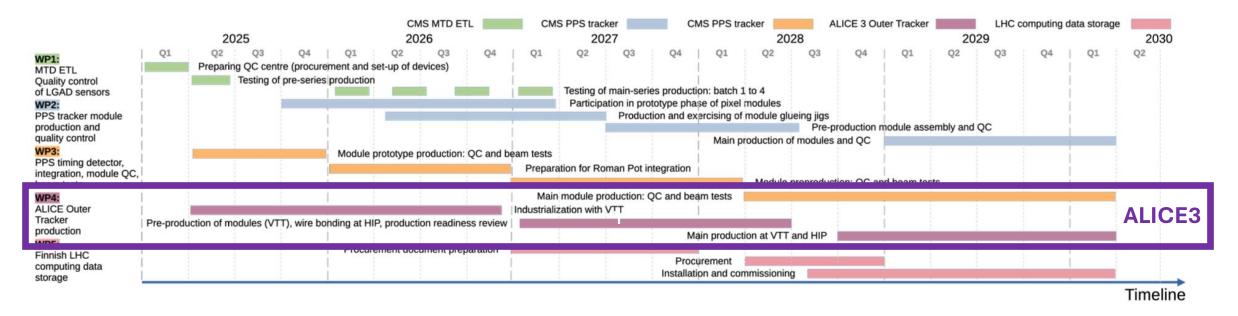
ALICE3 – current timetable of the projects

_	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	
		Run 3				LS3				Run 4		LS4		
	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 Q	1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q	3 Q4 Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 Q1	Q2 Q3 Q4	
ALICE 3	Detector scoping, WGs kickoff		of technologie ept prototype	1.22	TDRs, engine prototypes	eered		Construc	ction		ontingency a ecommission		tion and ssioning	
Magnet	C	esign, R&D	CDR		TDR	EDR	Co	nstructior	_ +6m	Contingency	On-sur commissi	Install		
IT	De	sign, R&D	Prote	otyping	Proto	ty phogn g	Pre-prod.	PRR		Integration	Contingency	On-surface commissioning	Installation	
от	De	sign, R&D	Prototypi	Proto	typing 🛱 Pre	e-prod.		Pro	oduction+9m		Contingency	Integr. Commiss.	Installation	
TOF		Design, R&D		Prototypin	Proto	typing 📴 Pro	e-production	PRR	Production 6m	Integration	Contingency	On-surface commissioning	Installation	
RICH		Design, R&D		Prototy	ping TDR	Prototyping	Pre-prod.	PRR	Production	+12m	Contingency	Integr. Commiss.	Installation	
ECal		Desig	n, R&D	Proto	typing TDR	Prototyping	Pre-prod.	PRR	Production	ı	Contingency	Integration	Installation	
MID	Design	& Prototyping	Protot	yping D	Prototypin	g 🖁 Pre-pr	roduction PRR	4	Production	+12m	Contingency	On-surface commissioning	Installation	
FCT		Design	Pro	ototypin	TDR Prot	totyping	Pre-prod.	PRR	Production 6m	Integration	Contingency	On-surface commissioning	Installation	
FD			Design		Prototypi	ing TDR	Protot.	Pre	-prod. R	roductib/6m	Contingency	Integr. Commiss.	Installation	


Finnish contribution to ALICE3


Outer Tracker of the new ALICE3 experiment:

- ALICE3 tracking will have total of 11 layers (12 for end caps), $|\eta| < 4$
 - vertex detector: 3 innermost layers inside the beam pipe
 - 4 middle layers
 - 4 outer tracking layers
- ALICE3 Outer Tracker (OT)
 - large area of ~50 m^2 : barrel 33 m^2 and disks 18 m^2
 - total of 10 000 OT modules, each containing 8 chips, and each chip 60 wire bonds \rightarrow 4.8 M bonds
 - with an automated bonder, 3 s per wire \rightarrow 4000 net hours
 - 5 hour curing time for the radiation hard glue (Araldite 2011)
 - \rightarrow several years, if modules manufactured one-by-one


OT module production needs to be industrialized

• Plan: contribute to R&D of the OT module production

Finnish contribution to ALICE3 – where we are today?

- Joint CMS-ALICE proposal to select CERN to Roadmap for Finnish research infrastructures 2025
 → decision by end of January 2025
- For ALICE3, Roadmap application covers 2/3 of Finnish core contributions + our plans for the R&D
- Industrialization of the Outer Tracker module production:
 - Collaboration with VTT Technical Research Centre of Finland Ltd
 - VTT: mass production of module production using industrial pick-and-place robots
 - HIP lab: wire bonding of the tracker elements with our new automated bonder
 - Inside ALICE, also Korean group works with industrialization

Summary:

Will we see the next generation heavy ion experiment?

We shall find out in ~2026 – hopefully even earlier:

- first parts ordered soon! not available later
- technical design reports (TDRs) 2026-2027
- engineering design runs (EDRs) 2027-2028
- production readiness reviews (PPRs):

Outer tracker 2028 Majority of other systems 2029-2030 Forward disks 2031

ALICE3 – what would it cost?

Table 2: Summary of CORE cost estimates of the ALICE 3 detector layout version 1.

System	Technology	Cost (MCHF)
Inner Tracker	MAPS	13.7
Outer Tracker	MAPS	27.8
TOF	Monolithic LGADs	18.0
	Hybrid LGADs	+13.4
RICH	Aerogel, SiPMs	24.2
ECal	Pb-scintillator + PbWO ₄	18.1
MID	Iron absorber, scintillator bars, SiPMs	4.0
FD	Scintillators, PMTs	1.1
Magnet system	Superconducting solenoid $B = 2$ T	31.0
Online Computing	CPU and GPU nodes, disk buffer	10.3
Total		148.2
Common items	Beampipe, infrastructure, services	+11.1
	TC design and engineering	+10.9
FCT	MAPS, dedicated dipole magnet	+3.45

Default version:

- Detector 149 MCHF
- Common items +22 MCHF

Total > 170 MCHF
(core only)

- +14 MCHF, if future R&D is not successful and fallback needed.
- +3.5 MCHF, if Forward conversion /tracker (FCT) included
- + (???) MCHF, if FoCal included

Total of 6 running years. → no major exp. comes cheap!

ALICE3 – descoping of the experiment

<u>Standard procedure</u>: prepare scenarios that are 10-30% cheaper to the LHCC. LHCC review gives recommendations to funding agencies.

ALICE3 scoping document – public part in this link.

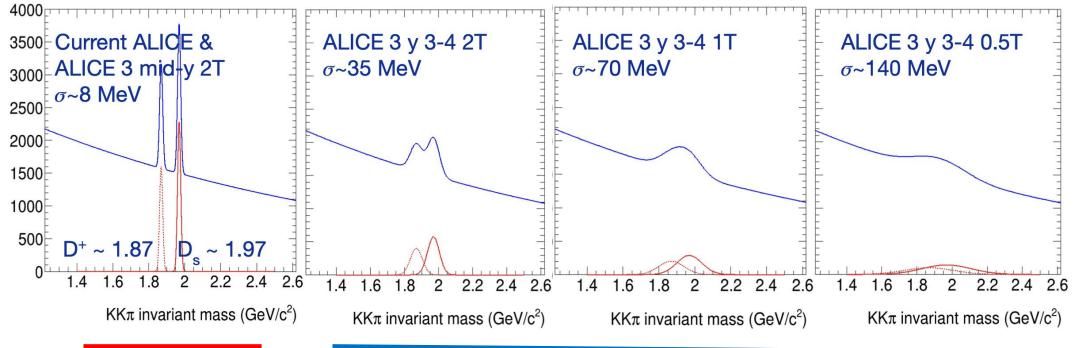
Version	Cost (MCHF)	Difference to v1
Reference detector layout v1	148.2	
Without ECal	-18.1	-12%
Smaller radius of magnet	-6.3	
Smaller radius of absorber and MID	-0.4	
Detector layout v2-2T	123.4	-17%
Magnetic field of 1 T	-5.1	
Detector layout v2-1T	118.3	-20%
Without TOF and RICH disks	-3.0 -4.3	
OT disk surface reduction	-5.0	
IT disk surface reduction	-2.0	
Shorter magnet (1 T)	-3.0	
Detector layout v3-a	101.0	-32%
Smaller RICH acceptance	-6.5	
Detector layout v3-b	94.5	-36%
Common items	+22.0	
Additional cost with FCT	+3.45	

Reduce performance, save money:

- Letter of Intent version, 149 MCHF
- No electromagnetic calorimeter, 124 MCHF
- Previous, and lower B-field, 119 MCHF
- Even smaller B and reduce $|\eta|$, 95 MCHF
- In all scenarios, +22 MCHF common items

Save money 12-36% with more and more painful reductions on performance.

(No time to discuss details today.)


ALICE3 – descoping of the experiment

LHC experiments committee

Standard procedure: prepare scenarios that are 10-30% cheaper to the LHCC. LHCC review gives recommendations to funding agencies.

ALICE3 scoping document – public part in this link.

Example: what if we save money by building a weaker magnet?

Mid rapidity, large field

Forward rapidity, reduce field from B = 2 T down to 0.5 T

ALICE3 – what does weaker field mean for the PID?

р_т (GeV/*c*) *p*_T (GeV/*c*) *p*_T (GeV/*c*) K/π 3σ separation TOF (inner) TOF (outer) TOF (lotward) RICH (barrel) RICH (forward) 10² e/π 3σ separation TOF (inner) TOF (outer) TOF (forward) RICH (barrel) B = 2.0 T B = 2.0 TB = 2.0 Tp/K 3o separation TOF (inner) p/K K/π e/π TOF (forward) 10 RICH (forward) **B=2T** 3 sigma separation 10-1 10-1 10-1 coverage: p_{T} vs η 10 10 10 p_T (GeV/c) *p*_T (GeV/c) p_T (GeV/c) 10² B = 1.0 T B = 1.0 Te/π 3σ separati B = 1.0 T K/a 3o separatio K 3o separat TOF (inner) TOF (outer) TOF (outer) TOF (forward) TOF (inner) TOF (inner) TOF (outer) p/K **Κ/**π e/π TOF (forward) TOF (forward) **B=1T** RICH (forward) RICH (forward) RICH (forward) 3 sigma separation coverage: p_{T} vs η 10-1 10-1 10-1 10 10-10-2 p_T (GeV/c) p_T (GeV/c) р_т (GeV/c) B = 0.5 Te/a 2.5o separatio B = 0.5 TK/x 2.5 separatio B = 0.5 Tp/K 2.5c separatio TOF (inner) TOF (inner) TOF (inner) K/π p/K e/π TOF (forward) TOF (forward) TOF (forward) RICH (barrel) RICH (barrel) RICH (barrel) 10 RICH (forward) RICH (forward) RICH (forward) B=0.5T 2.5 sigma separation coverage: p_{T} vs η 10 10-10 10-2

25