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Initial stage for heavy-ion collisions

> Heavy-ion collision <+ multi-stage process with each stage — effective theory

> Initial stage using Color Glass Condensate +— EFT for high energy QCD
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Figure from S. Schlichting talk @ Initial Stages 2016 [Equilibration in weak coupling approaches]
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Classical colored fields

> High energy nucleus — many gluons <
high occupation numbers for gluon fields
= classical colored fields
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Figure from F. Salazar’s talk @ INT program
[Probing QCD at High Energy and Density with Jets]




Classical colored fields 2

> H|gh energy nucleus — many gluons PN > Classical Yang—Mi”S field equations
high occupation numbers for gluon fields

covariant derivative
= classical colored fields

field strength tensor

l gluons gauge field
e 4R i
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color current of nucleus[

> MV model for color charges +— J#

Figure from F. Salazar’s talk @ INT program H . _
[Probing QCD at High Energy and Density with Jets] . COlor eIeCtromagnetlc flelds - Glasma



Not just any field...

Any field
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Not just any field...

Any field

Colored field




Not just any field...

Any field Colored field

Fields images generated using DALL-E 2 OpenAl




..but a very particular color field

Monet field Van Gogh field

Fields paintings generated using DALL-E 2 OpenAl




Features of the Glasma fields

> Strongly coupled = non-linear regime,
out-of-equilibrium classical colored fields
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Features of the Glasma fields

> Strongly coupled = non-linear regime,
out-of-equilibrium classical colored fields

> Gluon saturation built in: the saturation
momentum Qs — the only physical
parameter, here ()5 = 2 GeV

> Fields become dilute after 67 ~ Q!

> Fields arrange themselves in correlation
domains of transverse size dxp ~ Q!
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Features of the Glasma fields

> Strongly coupled = non-linear regime,
out-of-equilibrium classical colored fields

> Gluon saturation built in: the saturation
momentum Qs — the only physical
parameter, here ()5 = 2 GeV

> Fields become dilute after 67 ~ Q!

> Fields arrange themselves in correlation
domains of transverse size dxp ~ Q;l

> Anisotropic field configurations
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Glasma fields hard probes

> Question: What is the effect of initial stage on the early-produced partons ?
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Glasma fields hard probes
> Question: What is the effect of initial stage on the early-produced partons ?
> Prerequisite: Glasma fields numerically solved using real-time lattice gauge theory

> Task: Develop a colored particle-in-cell solver for particles in Glasma background fields
Inspired by the colored particle-in-cell method for solving the equations of motion of particles interacting
with Yang-Mills fields
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Glasma fields hard probes
> Question: What is the effect of initial stage on the early-produced partons ?
> Prerequisite: Glasma fields numerically solved using real-time lattice gauge theory
> Task: Develop a colored particle-in-cell solver for particles in Glasma background fields

Inspired by the colored particle-in-cell method for solving the equations of motion of particles interacting
with Yang-Mills fields

> Goal: Systematic study the impact of the Glasma stage on heavy quarks and jets
Quantifiable by evaluating momentum broadening 6p> and transport coefficients § for jets and k for heavy

quarks in the Glasma
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Heavy quarks probing the Glasma in p-Pb collisions » Glasma solved on the lattice

> Momentum broadening and ¢ for
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Jet momentum broadening in the pre-equilibrium Glasma
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Transport of hard probes through glasma 10/

Momentum broadening of heavy quarks and jets in the Glasma
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Glasma on the lattice

> Boost-invariant equations of motion
1 i
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-
1o 0,4 - igr® A"D; A" — D Fj; =0
.

%677-28,14" — Di(D;A") =0
.

> Glasma initial conditions

Al(r, 1) = Aj(ZL) + A5(ZL)

7=0
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7=0
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Glasma on the lattice

> Boost-invariant equations of motion
1 i
=D;0, A" +igrA"0; A" =0
.
1o 0,4 - igr® A"D; A" — D Fj; =0
.

%677-28714" — Di(D;A") =0
.

> Glasma initial conditions

Al(r, 1) = Aj(ZL) + A5(ZL)

7=0

SIS IPHCANEN)

7=0

> Wilson lines on the lattice <+ gauge links
W, = exp{igad,(x)}

> Wilson loops on lattice <+ plaquettes
Wo o = W oW W WE

T+, p

T+ p+v

> Glasma lattice implementation with
plaquettes only in the transverse plane

g



Particle solver 0%

avy

> Wong's equations <> classical equations of motion for particles (z*, p#, ()) evolving in
Yang-Mills fields A"

coordinate momentum

ﬁ li gauge field
dot Dyl aw_
m;—p s mﬁ— gTiRTI'{(VF [ ]}py, mg——lg[ ;u(J]p

proper time Tcoupling constant mass

where Tr = 1/2 for quarks in the fundamental representation and D/dt is the covariant derivative in

curvilinear coordinates




Glasma spaghetti and noodles 10
[\
> Glasma spaghetti trajectories > Glasma noodles momenta evolution
dT

p*

Sz p




",

Color rotation on the lattice 1%
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fielqy > Lattice rotation of color charge inspired by the
- colored particle-in-cell method

Q(Tn) = u(Tn—la Tn) Q(Tn—l) Z/[T(Tn—h Tn)
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Color rotation on the lattice 1%
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fielgs > Lattice rotation of color charge inspired by the
- colored particle-in-cell method

Q(Tn) = u(Tn—la Tn) Q(Tn—l) UT (Tn—h Tn)
with the Wilson line constructed as

Transverse gauge link

\
Z/[(Tnthn): Uzn_l,i . (v’r 1,7

T
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Color rotation on the lattice S
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> Lattice rotation of color charge inspired by the
colored particle-in-cell method

felqs ,,
Tn

Q(Tn) = u(Tn—la Tn) Q(Tn—l) UT(Tn—h Tn)

with the Wilson line constructed as

Transverse gauge link

\
Z/[(Tnthn): Uzn_l,i . (v’r 1,7

T

> Symplectic solver which assures ) € SU(N) and

x conservation of Casimir invariants




Quantifying the effect of Glasma S1%

> Momentum broadening <> measure for the accumulated momentum of a probe in Glasma

5]9% (7_) = pz (7-) - pz (Tform)
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> Derivative of momentum broadening < instantaneous
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Quantifying the effect of Glasma S1%

> Momentum broadening <> measure for the accumulated momentum of a probe in Glasma
20y — 2 2
5]9“(7-) - p,u(T) - p,u,(Tform)

> Derivative of momentum broadening < instantaneous
d

(r) = —(0ph.2()

> Anisotropy transfer anisotropic Glasma +— hard probes

heavy quark anisotropy =




Heavy quark momentum broadening 5%
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Heavy quark momentum broadening 5%
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Heavy quark momentum broadening 817

beauty quarks @, = 0.02 [fm/c] > Longitudinal and transverse
momentum broadening for
beauty quarks with initial pr

> Heavy quark anisotropy

> Dynamical quarks — finite
mass, initial pr € [0, 10] GeV
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Heavy quark momentum broadening 5%

8T beauty quarks @, = 0.02 [fm/c] > Longitudinal and transverse
momentum broadening for

beauty quarks with initial pr

> Heavy quark anisotropy

> Dynamical quarks — finite
mass, initial pr € [0, 10] GeV

0 05 ! L5 2 > Static quarks — infinitely
. 2
—~ EFE
T, prlGeV] 0 —2 —5 —10 massive = (0p*) o ( )
< | — static quarks > Deviations from static quark
=<2 scenario, full dynamics matters




beauty quarks @, = 0.02 [fm/c]

Heavy quark momentum broadening

charm quarks @ 1, = 0.06 [fm/c]

2 x (3p;)

2 —5 —10

Longitudinal and transverse
momentum broadening for
beauty quarks with initial pr

Heavy quark anisotropy

Dynamical quarks — finite
mass, initial pr € [0, 10] GeV
Static quarks — infinitely
massive = (6p®) o< (EF)
Deviations from static quark

scenario, full dynamics matters

Charm quarks are lighter than
beauty but are formed later
when the fields are dilute




Heavy quarks in Glasma flux tubes
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Proper time evolution of the energy density from a Glasma correlation domain




Heavy quarks in Glasma flux tubes
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Trajectories of heavy quarks produced at the center of a Glasma flux tube




Conclusions

Summary

> Developed a numerical solver for
probes in Glasma

> Used this solver to investigate
momentum broadening, transport
coefficients and anisotropy of heavy
quarks and jets in Glasma

> Studied the effect of finite formation
time, mass and initial transverse
momentum




Conclusions

Summary

> Developed a numerical solver for
probes in Glasma

> Used this solver to investigate
momentum broadening, transport
coefficients and anisotropy of heavy
quarks and jets in Glasma

> Studied the effect of finite formation
time, mass and initial transverse
momentum

Future studies

> Investigate how Glasma field
correlators affect the momentum
broadenings of hard probes

» Compute other observables: angular
correlations of QQ) pairs

> Include energy loss mechanisms of
partons in Glasma (backreaction,
bremsstrahlung)

> Extend the study to 3+1D Glasma
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