CMS Pixel Detector Upgrades and More

Erik Brücken

16.11.2021

The CMS Pixel detector before LS2

 Silicon Pixel Detect Detector is innermost part of CMS tracking detector.

• Closet detector to IP, facing harshest conditions.

• \mathcal{L} (IP5) max $1.7 \times 10^{34} \, \text{cm}^{-2} \text{s}^{-1}$

• Delivered in Run 2: 150 fb⁻¹

Phase 1 upgrade version of BPIX

Phase 1 upgrade modules

Design

- Pixel sensors based on n-type silicon (300 μ m).
- One module consists of 16 pixel sensors
- Each sensor contains $80 \times 52 = 4160$ pixels
- Hybrid detector design: Sensors flip-chip bonded to ReadOutChip (ROC).
- We use ROCs from PSI46 family.
- High density interconnect (HDI) clued onto sensor module
- Three slightly different modules

CMS Pixel Phase-1 upgrade sensor

Design

- Material: n-type float zone (FZ) silicon wafer (4-inch).
- Resistivity 3.7 kΩcm.
- Highly doped pixelated n⁺ in n sensor design with uniform p doped back side.
- Pixel isolation via p-spray/p-stop structures.
- Bias grid with punch through bias dots.

CMS Pixel Phase-1 upgrade ROC

Readout chip for prototypes

- CMOS ASIC developed by PSI for the pixel sensors of the CMS tracker.
- 4160 pixels (52 \times 80) in 8 \times 7.6 mm² active area.
- Photo counting capable.
- Full pulse processing per pixel.
- Charge threshold of 1.5 ke⁻, resolution ~120 e⁻.
- Radiation hardness > 2.5 Mrad.
- Available with PbSn or (Indium bumps for low-T processing).
- Several versions available: PSI46dig for Layer 2-4, PROC600 for layer 1.

see: B. Meier 2011 JINST 6 C01011,

D. Hits & A. Starodumov 2015 JINST 10 C05029

CMS Pixel Phase-1 Layer-1 upgrade

Why upgrade?

- Fluence of $\Phi \approx 3.0 \times 10^{15} n_{eq}/cm^2$ in layer 1 for 500 fb⁻¹. Operational limits require change at 250 fb⁻¹
- Ionizing Radiation causes displacements, vacancies, interstitials, etc.
- Radiation damages in sensor bulk and on surface causes:
 - $\bullet \ \ \mathsf{Higher} \ \mathsf{leakage} \ \mathsf{currents} \Rightarrow \mathsf{electronic} \ \mathsf{noise}$
 - Type inversion can occur in silicon bulk
 - Need higher depletion voltage for operation ⇒ breakdown risk
 - Charge trapping.
- Overall signal quality reduced.

CMS Pixel Phase-1 Layer-1 upgrade modules

Our role in Finland

- Part of the production of 150 new layer 1 pixel modules.
- Wafers of modules and ROCs were received via PSI.
- Thinning (ROC) and dicing of wafers and bump bonding done by ADVACAM Oy.
- At HIP we tested the modules for basic functionalities, unit by unit.
- Emphasis on bump bonding and IV test as fast feedback to the producer.

Frik Brücken

CMS Pixel Phase-1 Layer-1 upgrade modules :: QA in HKI

Criteria for bare modules after bump bonding

- Leakage current at -150 V $< 2 \mu A$: grade A; $< 10 \mu A$: grade B; otherwise: grade C.
- Slope of leakage current I(-150 V)/I(-100 V) < 2: grade A; otherwise grade B.
- ROCs needs to be alive and configurable.
- Pixel and bump bonding test.
- For worst ROC in module < 1% defects: grade A; < 4% defects: grade B, otherwise grade C.

The bump bonding test

• Test pulse send via capacitively coupled test pad to each pixel. Signal readout via metal bump. Received signal is compared to test pulse.

CMS Phase-1 Layer-1 upgrade modules :: QA in HKI

381785-19-1

Tue Aug 13 11:13:09 2019

Dead: 45 Bump: 52 Total: 97 ld: 29. la: 2 ld: 34. la: 3 ld: 32. la: 3 ld: 33, la: 3 ld: 33. la: 2 ld: 33. la: 4 ld: 32. la: 3 ld: 32. la: 3 B: 0. D: 1 B: 0. D: 1 B: 0. D: 1 B: 0. D: 1 B: 0. D: 4 B: 0. D: 1 B: 0. D: 1 B: 0. D: 2 15 14 13 12 11 10 8 B: 0. D: 2 B: 0. D: 4 B: 52. D: 9 B: 0. D: 2 B: 0. D: 1 B: 0. D: 11 B: 0. D: 3 B: 0. D: 1 ld: 34. la: 4 ld: 33. la: 3 ld: 33. la: 2 ld: 33. la: 3 ld: 33. la: 3 ld: 32. la: 3 ld: 31. la: 3 ld: 32. la: 2

Particle Physics Day 2021

10/27

Erik Brücken

CMS Phase-1 Layer-1 upgrade modules :: QA in HKI

Figure: Setting up QA process for detector module in probestation at HIP Detector Laboratory cleanroom (left), flip-chip bonding expert showing ready detector modules (right).

CMS Pixel Phase-1 Layer-1 upgrade summary

- Critical update for maintaining high quality CMS data during Run 3.
- Modules were successfully flip-chip bonded by Advacam Oy.
- QA after flip-chip bonding done in Helsinki Detector Laboratory clean rooms.
- Detector modules were sent to Paul Scherrer Institute, Switzerland, for full module assembly.
- Of 154 tested modules: 139 class A, 2 class B, 3 class C, 10 unclassified.
- All over yield $\sim 90\%$
- Full detector now installed and in preparation process for Run 3.

In progress: The Phase 2 upgrade of the CMS tracker

Challenges in HL-LHC

- Pile-up increases substantially to \sim 200
- Luminosity increase up to $\mathcal{L} \approx 7.5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$, $\mathcal{L}_{\rm int} \approx 3000 \text{fb}^{-1}$

Tracker requirements

- High granularity to reduce occupancy
- Reduction of material budget to improve tracking performance
- Radiation hardness

CMS Phase 2 tracker

• Important differences to phase 1 tracker: re-arrangements of layers, inclined outer tracker modules, better forward coverage, higher granularity, etc.

CMS Phase 2 inner tracker modules

- Detector modules consist of bump bonded ROC sensor units with glued HDI on sensor side.
- HDI electrically connected by wire bonds.
- HDI without active electronics.
- Foreseen to have 2 type of modules, 1×2 and 2×2.
- Small 1×2 modules will be used in inner 2 layers of the barrel (TBPX) and the disks (TFPX, TEPX). Larger 2×2 modules for the outer layers.

CMS Phase 2 tracker sensor options

- Thin (150 μ m) n-in-p Si sensors.
- Planar sensors baseline
- 3D option for inner layer (more radiation hard but more expensive)
- Pixel size $25 \times 100 \mu m$ or/and $50 \times 50 \mu m$.
- Decision of technology very soon.

CMS Phase 2 pixel readout chip

- New readout chip developed within the CERN RD53 collaboration.
- ASIC based on 65 nm technology.
- CMS uses RD53B-CMS flavor called CROC
- Cell size of $50 \times 50 \,\mu\text{m}^2$
- Number of pixels 432×336.
- Radiation hard (tested up to 1GRad).
- Power consumption low ($\sim 1 \text{W/cm}^2$).

CMS Phase 2 tracker material budget

• Significant improvements compared to present tracker due to e.g. lighter materials, less layers, inclined modules of outer tracker, etc.

Finnish contributions to the CMS Phase 2 tracker upgrade

- Building of 250 inner tracker modules.
- Testing and calibration of all 500 modules paid by Finland.
- Module production center at CERN currently in building up phase in collaboration with Rudjer Boscovic Institute (Croatia).
- First pre-production modules foreseen for mid-2022.
- Mechanical design of the Outer Tracker.

The Minimum ionizing particle Timing Detector (MTD)

Motivation

- In High Luminosity LHC we aim for $\mathcal{L}\approx 5.0\times 10^{34}\,\mathrm{cm^{-2}s^{-1}}$ meaning we get huge pile-up (up to 200 interactions per bunch crossing).
- Idea: timing detector to help separating collisions (aim for \sim 30 ps t-resolution).

MTD overview

Layout

- MTD consists of the Barrel Timing Layer (BTL) and the Encap Timing Layer (ETL).
- Position between tracker and calorimeter.

MTD overview

- BTL (LYSO + SiPM) has larger surface area, faces lower radiation dose and uses mature readout technology.
- ETL (LGAD) is exposed to larger radiation dose. Synergies with ATLAS in terms of R&D.
 Flexible installation schedule.

	Barrel (LYSO:Ce + SiPM)	EndCap (LGAD)
Region	$\mid \eta < 1.5$	$\mid 1.6 < \eta < 3.0$
Surface area	36.5m^2	$12 \mathrm{m}^2$
Power consumption	0.5 kW/m ²	$1.8\mathrm{kW/m^2}$
Radiation dose	$2 imes 10^{14} n_{ m eq}/{ m cm}^2$	$\mid 2 imes 10^{15} n_{ m eq}/{ m cm}^2$
Installation date	2022	2024

MTD :: ETL

Position and design

- ETL consist of 2 double sided disks of LGAD modules.
- Mounted on CMS endcap nose.

MTD :: ETL module design

MTD :: ETL sensors

LGADs

- MTD-ETL based on Low Gain Avalanche Diode (LGAD) technology.
- Planar silicon sensors of 50 μ m thickness.
- Avalanches or charge multiplication due to high electric field (~ 300 kV/cm).
- Field generated by high doped layer (p++) of $N_{\rm d} \approx 10^{16} {\rm cm}^{-3}$.
- R&D Structures manufactured by: Fondazione Bruno Kessler (FBK) - Italy Hamamatsu Photonics K.K. (HPK) -Japan Microelectronic National Center (CNM) -Spain

Ultra Fast Silicon Detector E field

MTD :: ETL :: Finnish activities

R&D

- $$\begin{split} \bullet & \mbox{ Find sensor for optimal timing resolution:} \\ \sigma_{\rm t}^2 \sim \sigma_{\rm jitter}^2 + \sigma_{\rm Landau}^2 + \sigma_{\rm distortion}^2 \\ \Rightarrow & \mbox{Small capacitance and high signal} \\ & \mbox{ strength reduce jitter and Landau noise.} \end{split}$$
- - \rightarrow high fill-factor (active / geometrical area) increases number of two hit tracks.
 - \rightarrow using transient current technique to measure fill-factor¹.
- Radiation tolerance
 → study of long term stability, acceptor removal problem, etc.

¹see S. Bharthuar et al., Study of interpad-gap of HPK 3.1 production LGADs with TCT. NIM A 979 (2020) 164494

Finnish contributions to CMS upgrade :: Summary

Pixel phase-1 layer-1 upgrade

• Upgrade finished and detector installed, waiting for Run 3.

Phase 2 tracker upgrade

- Currently preparing premises in CERN clean room for the Pixel Phase-2 production (furniture, equipment).
- Next year we start commissioning the production center and pre-production will start.
- Phase-2 pixel module production will start in late 2023.

MTD-ETI

- Ongoing testing of LGAD sensors.
- Participation in pre-production and production (at HIP detector laboratory).