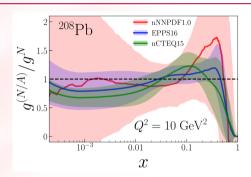

ALICE FoCal – first results from 2021 test beam

H. Rytkönen¹, N. Novitzky²

¹University of Jyväskylä ²University of Tsukuba

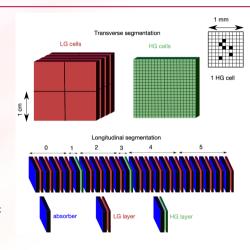
November 16, 2021


Motivation

The momentum fraction x is linked to partons with $p_{\rm T}$ at rapidity y

$$x pprox rac{2p_{\mathsf{T}}}{\sqrt{s}} \exp\left(-y\right)$$

 \Rightarrow To probe low-x region we need low p_T and high rapidity

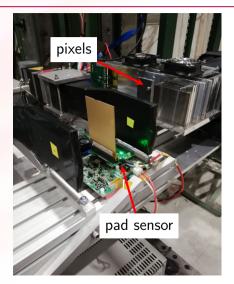


To measure prompt photons we also need

- isolation of photons ⇒need for HCal
- good π^0 identification to exclude their decay photons
 - \Rightarrow identification enables other interesting π^0 physics studies!

FoCal

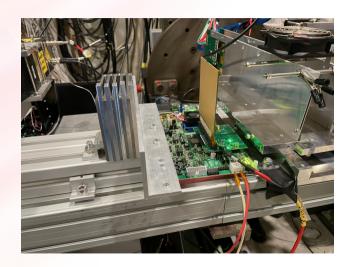
- To answer these needs ALICE will have FoCal at forward rapidity (3.4 $< \eta < 5.8$)
 - FoCal electromagnetic calorimeter (ECal) consists of
 - 18 pad layers ⇒shower energy & profile
 - 2 pixel layers ⇒good two photon separation (important to identify π⁰s!)
 - HCal behind ECal
 - for photon isolation
 - together with ECal, enables forward jet measurement



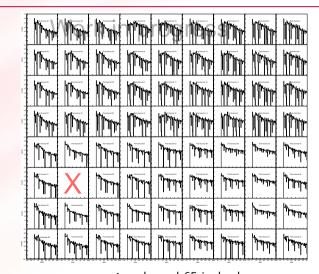
ALICE collaboration, "Letter of Intent: A Forward Calorimeter (FoCal) in the ALICE experiment," CERN-LHCC-2020-009.

Test beam

- During September-October a test beam was held for FoCal @ CERN Prévessin
- All the subsystems (ECal pads and pixels, HCal) were measuring during the test beam
- This presentation concentrates on analysis of the pad sensor

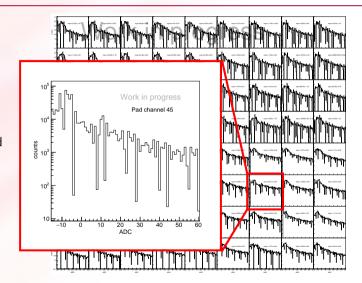

Tested pad sensor

- Silicon sensor that uses HGCROC chip for front-end readout (developed by CMS for HGCal)
- The sensor consist of $8 \times 9 = 72 \ (1 \ cm \times 1 \ cm)$ channels

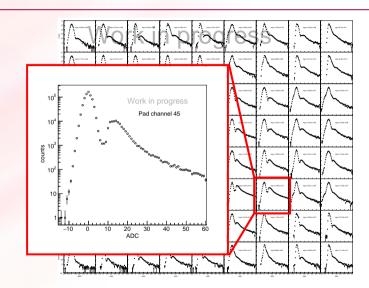


What was measured with the pad sensor

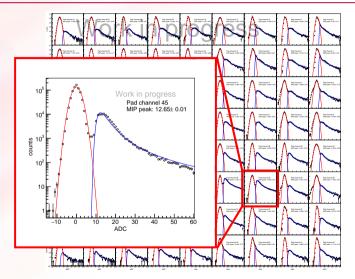
- Collected lots of data to check the MIP peak in the pad channels
 - ⇒ energy calibration
- Internal injection
 - ⇒ response calibration
- Beam particles at different energies, with 5 and 10 layers of tungsten in front of the sensor
 - ⇒ shower distributions



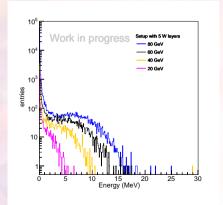
- Figure presents the raw data from the sensor for all 72 channels
- To get the MIP peak from the raw data...

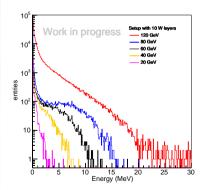


note: channel 65 is dead


• .. noise pedestal needs to be removed from each channel...

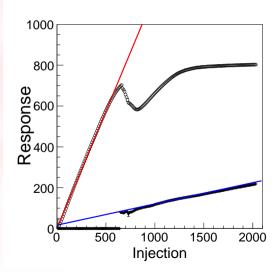
 .. and common noise needs to be removed event by event.



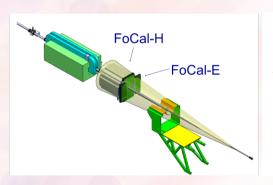

- After cleaning up the data the MIP peak is clearly visible from noise!
 - Gaussian fitted to the noise pedestal (red) and Landau to the MIP peak (blue)
- The peak is visible in most channels to varying degree

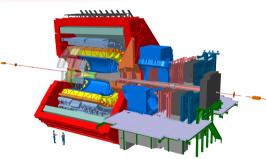
Shower distributions

- The beam consist of mixture of electrons and hadrons depending on energy
 - Higher beam energy ⇒larger hadron contamination
- Ideal if hadrons would pass through ECAL but they do shower to some extent ⇒contribution at lower energy of the distribution

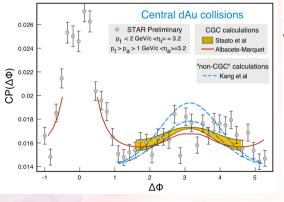

Conclusions & outlook

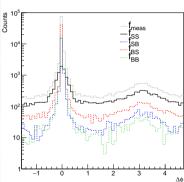
- All FoCal subsystems were tested at CERN. For the pad sensor
 - MIP peak at 12 ADC counts clearly observed
 - dynamic range measured for this setup (1 MIP \rightarrow 4000 MIP, still tunable)
 - test beam gave insights to the calibration procedure and revealed issues to fix for the following tests
- During summer/autumn next year another test beam under planning: setup with 18 pad + 2 pixel layers
 - common readout so that events can be matched in all sub systems
 - full set of ECal layers allows to study the shower profile & energy resolution
- Before the summer test measurements for pads only in May


Thank you for your attention!


Backup: calibration

- Response of the sensor was studied by injecting charge to the sensor
- ADC dynamic range is not enough
 ⇒need to switch to ToT after ADC
 saturates




Backup: FoCal structure

Backup: $\pi^0 - \pi^0$ correlations

