Quark cores in neutron stars

Aleksi Kurkela November 2020 PPD2020

AK, Fraga, Schaffner-Bielich, Vuorinen, Astrophys.J. 789 (2014)
Gorda, AK, Vuorinen, Romatschke, Säppi, PRL 121 (2018)
Annala, Gorda, AK, Vuorinen, Nättilä, Nature Phys. (2020)

image credit: Jyrki Hokkanen CSC

Elementary particle matter:

• Matter in extreme conditions reveals its constituents

Nuclear matter

Quark matter

Elementary particle matter:

- Matter in extreme conditions reveals its constituents
- New era for matter in extreme conditions:

LHC Run 3-4, HL-LHC, FAIR, NICA, ...

 $LIGO+Virgo, NICER, eXTP, \dots$

Neutron stars

- Competition between **gravity** and **pressure of strong** interactions determines the macroscopic features of neutron stars mass-radius relationship, maximal stable masses, tidal deformability, etc...
- Neutron stars are nature's own *femtoscopes*

 $10^{-15}\mathrm{m} \to 10 \mathrm{km}$

Neutron stars

- Competition between **gravity** and **pressure of strong** interactions determines the macroscopic features of neutron stars mass-radius relationship, maximal stable masses, tidal deformability, etc...
- Neutron stars are nature's own *femtoscopes*

 $10^{-15} \text{m} \rightarrow 10 \text{km}$...but 10^{19}m away

The other femtoscope:

• Transition to hot quark matter around $\epsilon \sim 500 \text{MeV/fm}^3$.

The other femtoscope:

- Transition to hot quark matter around $\epsilon \sim 500 \text{MeV}/\text{fm}^3$.
- The big question:

Is there cold quark matter inside neutron stars?

Challenge:

- At low densities nuclear EFTs: Challenges at saturation density This takes you about 200m inside the star
- At large densities resummed pQCD

reliable around $40\rho_0$

Challenge:

• Cores of neutron stars somewhere in between

Need astrophysical measurements to empirically extract EoS in between

Neutron star observations:

- Pulsar timing:
 - Shapiro delay $M \sim 2M_{\odot}$

Demorest et al. Nature (2010) Antoniadis et al., Science (2013)

Neutron star observations:

- Pulsar timing:
 - Shapiro delay $M \sim 2M_{\odot}$

Demorest et al. Nature (2010) Antoniadis et al., Science (2013)

- Time resolved X-ray spectroscopy:
 - Mass and radius measurements NICER, eXTP,...

Nättilä et al. Astron.Astrophys. 608 (2017)

Neutron star observations:

- Pulsar timing:
 - Shapiro delay $M \sim 2M_{\odot}$

Demorest et al. Nature (2010) Antoniadis et al., Science (2013)

- Time resolved X-ray spectroscopy:
 - Mass and radius measurements NICER, eXTP,...
- Gravitational waves:
 - Bounds on tidal deformability LIGO+Virgo

Constraining the Equation of State with neutron stars

• Large ensembles of interpolations between known limits

set of 400 000 EoS's

Constraining the Equation of State with neutron stars

• Large ensembles of interpolations between known limits

set of 400 000 EoS's

• Existence of a $2M_{\odot}$ implies that EoS must be stiff enough

Constraining the Equation of State with neutron stars

• Large ensembles of interpolations between known limits

set of 400 000 EoS's

- Existence of a $2M_{\odot}$ implies that EoS must be stiff enough
- Non-detection of tidal deformation by LIGO/Virgo implies that the EoS must be soft enough The first determination of NS radius from GWs

Quark Matter cores in Neutron Stars?

• Rapid softening hints to a phase transition to quark matter $\epsilon \sim 500 - 750 \text{MeV/fm}^3$,

Quark core in maximally massive NSs

Sizeable fraction of the star (25%) may be in the quark phase.

- If $c_s^2 < 0.4$, at least $0.4M_{\odot}$ of quark matter.
- If no quark matter, collapse to black hole triggered by the phase transition

Future:

• Combined effort of nuclear physics, QCD, and astrophysical observations will allow to determine the phase of the neutron star cores

Conclusions:

- Neutron stars have opened up a novel window to extreme QCD matter
- Combining astronomical and theoretical inputs allows to empirically determine properties of strongly interacting matter in extreme conditions where no 1st principles calculations are available
- Hints pointing to quark matter in maximally massive stars. No definite answers yet but quark cores should be treated as a standard scenario

Extra slides

Building stars

AK et al. Astrophys.J. 789 (2014) 127

- Nuclear EoS present only as thin crust:
 - Important as a boundary condition to interpolation, not the EoS itself!

Robustness of the interpolation

- Three different interpolations agree well:
 - piecewise polytropic
 - Chebyshev polynomial polytropic index, $\gamma(p) = \exp(\sum_{k} T_k(p) \tilde{\gamma}_k)$
 - piecewise linear $c_s^2(p)$

up to 5 independent segments

up to 4 independent segments

Annala, Gorda, AK, Nättilä, Vuorinen, Nat. Phys. (2020)