Recent TOTEM results – implications on t-channel exchange of a C-odd colourless 3-gluon compound

K. Österberg, Department of Physics & Helsinki Institute of Physics, University of Helsinki

on behalf of the TOTEM collaboration

Particle Physics Day 7.11.2019

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Outline:

- Elastic scattering & t-exchange of colourless C-odd 3-gluon compound
- $\sim \rho \& \sigma_{\rm tot}$ in pp @ \sqrt{s} = 13 TeV
- \checkmark Elastic pp differential cross-section @ \sqrt{s} = 2.76 & 13 TeV
- \checkmark Comparison with elastic $p\overline{p}$
- Summary & next steps

Elastic scattering: t-channel particle exchange

Elastic proton (anti)proton scattering at TeV scale: gluonic exchange

Experimental variable: t $\approx -P^2\theta^2$, four-momentum transfer squared

Electromagnetism (QED): J^{PC} = 1⁻⁻

TOTEM

Photon exchange

"Pomeron" exchange: system of 2 (or more number of) gluons "Odderon" exchange: system of 3 (or more number of) gluons

Crossing odd

P = C = -

p

???

р

p

Strong interaction (non-pertutative QCD)

Elastic scattering: t-channel particle exchange

Strong interaction (non-pertutative QCD)

Elastic proton (anti)proton scattering at TeV scale: gluonic exchange

Experimental variable: t $\approx -P^2\theta^2$, four-momentum transfer squared

Crossing even

P = C = +

Electromagnetism (QED): $J^{PC} = 1^{--}$

TOTEM

Photon exchange

dominates at very low |t| (< $\approx 10^{-3}$)

"Pomeron" exchange: system of 2 (or more number of) gluons

dominates at low |t|, \approx imaginary part of A_{el}^{nucl}

High |t| (\gtrsim few GeV²): perturbative QCD

"Odderon" exchange: system of 3 (or more number of) gluons

mostly suppressed, mainly real part of A_{el}^{nucl} different for pp & pp

Elastic scattering: t-channel particle exchange

Strong interaction (non-pertutative QCD)

Elastic proton (anti)proton scattering at TeV scale: gluonic exchange

Experimental variable: $t \approx -P^2 \theta^2$, four-momentum transfer squared

Electromagnetism (QED): $J^{PC} = 1^{--}$

TOTEM

Photon exchange

dominates at very low |t| (< $\approx 10^{-3}$)

Crossing even P = C = + p p p p pp

"Pomeron" exchange: system of 2 (or more number of) gluons

dominates at low |t|, \approx imaginary part of A_{el}^{nucl}

High |t| (\gtrsim few GeV²): perturbative QCD

mostly suppressed, mainly real part of A_{el}^{nucl} different for pp & pp

A. Donnachie, P. V. Landshoff, Z. Phys. C 2 (1979) 55.

$\sigma_{tot} \& \rho \text{ measurement in } pp @ \sqrt{s} = 13 \text{ TeV}$ $TOTEM @ \sqrt{s} = 13 \text{ TeV}: \sigma_{tot} = 110.5 \pm 2.4 \text{ mb}, \rho = 0.09/0.10 \pm 0.01$ EPJC 79 (2019) 785

Comparison to conventional (no-Odderon) model predictions (PRL 89 (2002) 201801):

σ_{tot}& *ρ* measurement in pp @ \sqrt{s} = 13 TeV TOTEM @ \sqrt{s} = 13 TeV: σ_{tot} = 110.5 ± 2.4 mb, *ρ* = 0.09/0.10 ± 0.01 EPJC 79 (2019) 785

Comparison to conventional (no-Odderon) model predictions (PRL 89 (2002) 201801):

no conventional (no-Odderon) model able to describe simultaneously TOTEM $\sigma_{tot} \& \rho$ measurements \Rightarrow adding t-channel exchange of a "Odderon" improves model descriptions

$\int d\sigma_{\rm el}/dt \text{ in pp } @ \sqrt{s} = 2.76 \& 13 \text{ TeV}$

TOTEM @ \sqrt{s} = 2.76 & 13 TeV: observation of diffractive dip in $d\sigma_{el}/d|t|$

arXiv: 1812.08610, submitted to EPJC; EPJC 79 (2019) 861

$d\sigma_{\rm el}/dt$ in pp @ \sqrt{s} = 2.76 & 13 TeV

TOTEM @ \sqrt{s} = 2.76 & 13 TeV: observation of diffractive dip in $d\sigma_{el}/d|t|$

arXiv: 1812.08610, submitted to EPJC; EPJC 79 (2019) 861

Characteristic for pp scattering:

TOTEM

- persistency of dip at all TeV energies
- position of dip in |t| decreases with energy
- cross-section ratio between 2nd max & dip, R, remains ~ constant

 $R \equiv d\sigma_{el}/d |t|^{2nd \max}/d$

 $d\sigma_{\rho_l}/d|t|^{\mathrm{diff\,min}}$

Persistency of dip for pp & absence of dip for pp $\Rightarrow d\sigma_{el}/dt$ in pp & pp significant different at TeV scale \Rightarrow expected effect of t-channel exchnage of "Odderon"

R-ratio in pp & pp @ TeV scale

R-ratio in pp & pp @ TeV scale

R ~ constant in pp & R in pp ≫ R in pp ⇒ pp & pp̄ $d\sigma_{el}/dt$ significant different at TeV scale ⇒ expected effect of t-channel exchange of "Odderon"

Summary & next steps

TOTEM

- □ TOTEM $\sigma_{tot} \& \rho$ measurements not compatible with conventional (no-Odderon) models \implies t-channel exchange of a coulorless C-odd 3-gluon compound state ("Odderon") ?
- Data (to be) taken in 2018 (2021?) at \sqrt{s} = 0.9 (14) TeV to confirm σ_{tot} & ρ trends vs energy & quantify observed effect
- Constructing a new scintillator-based T2 for inelastic rate determination in a σ_{tot} measurement at $\sqrt{s} = 14$ TeV in 2021(?)
- □ Observation of diffractive dip in pp @ \sqrt{s} = 2.76 & 13 TeV \implies persistence of dip @ TeV scale in pp & absence in pp \implies expected effect of t-channel exchange of a coulorless C-odd 3-gluon compound state ("Odderon")
- Making together with D0 model-independent extrapolations of $d\sigma_{\rm el}/dt$ pp characteristics to same \sqrt{s} as D0 measurement of $d\sigma_{\rm el}/dt$ pp to quantify difference between pp & pp