

ALICE overview

Sami Räsänen

Jyväskylä University & Helsinki Institute of Physics sami.s.rasanen@jyu.fi

ALICE experiment

ALICE:

- 40 countries
- 177 institutes
- 1917 members

UNIVERSITY OF JYVÄSKYLÄ

283 papers
 (by 4.11.2019)

INSTITUTE OF

ALICE – Finnish team today

3 seniors and 4 PhD-students:

- Sami Räsänen, HIP project leader
- Wladyslaw Trzaska, CERN project leader of FIT,

represents forward detectors in ALICE Management Board

- DongJo Kim, coordinator of physics analysis group on flow in ALICE
- Maciej Slupecki, PhD-student, FIT
- Jasper Parkkila, PhD-student, flow analysis
- Heidi Rytkönen, PhD-student, FIT
- Oskari Saarimäki, PhD-student, jet analysis

Main involvement in ALICE:

- Physics data analysis: collective flow and jets
- Fast Interaction Trigger (FIT) detector

FINLAND: conceptual design of the detector!

UNIVERSITY OF IYVÄSKYL

ALICE @ Quark Matter 2019

System	Year(s)	√s _{nn} (TeV)	L _{int}
Pb–Pb	2010,2011	2.76	~75 μb⁻¹
	2015	5.02	~250 µb⁻¹
	2018	5.02	~1 nb⁻¹
Xe–Xe	2017	5.44	~0.3 µb⁻¹
p–Pb	2013	5.02	~15 nb ⁻¹
	2016	5.02, 8.16	~3 nb ⁻¹ ; ~25 nb ⁻¹
рр	2009-2013	0.9,2.76,7,8	~200 µb⁻¹; ~100 nb⁻¹; ~1.5 pb⁻¹; ~2.5 pb⁻¹
	2015,2017	5.02	~1.3 pb ⁻¹
	2015-2018	13	~40 pb ⁻¹

ALICE @ QM19:

- 27 talks
- 90 posters
- 57 new analysis to be approved (internally)

Finnish team:

- 1 talk: Jasper Parkkila, collective flow
- 2 posters: Oskari Saarimäki, di-jet mass DongJo Kim, flow harmonic spectra

ALICE @ Quark Matter 2019

Selection of ALICE results at QM19:

ALICE strengths: particle identification and tracking

Backup 24: Hypertriton lifetime measurement

- exclude large deviation from free Λ lifetime
- exotic nuclei one of the key areas for ALICE in Run 3 and 4

Backup 25: mass ordering of the non-linear flow coefficients – first measurement

Backup 26: Using machine learning techniques to study jets down to $p_{T,jet}$ = 40 GeV in Pb+Pb

Backup 27: hadron-jet correlations, novel way to do data driven background subtraction in Pb+Pb

Backup 28: Jet physics with particle identification of the constituents - D⁰ fragmentation. ALICE also made first measurement in dead cone effect!

UNIVERSITY OF IYVÄSKYL

High order flow harmonics

UNIVERSITY OF JYVÄSKYLÄ

- Initial state models: geometrical anisotropy, hot spots
- Hydrodynamics: conversion to momentum anisotropies

$$\frac{dN}{d\phi} \propto \sum_{n=0}^{\infty} 2\nu_n \cos(n(\phi - \psi_n))$$

 Viscous damping (see DongJo's poster): Shuryak, PRC84 (2011) 044912; Lacey et al., arXiv: 1301.0165

$$v_n \propto e^{-\lambda n^2}$$

 Hint: v₉ > v₈, while in hydro goes down monotonically Acoustic peak? Shuryak, arXiv: 1710.03776

Symmetric Cumulants SC(k,l,m)

New in QM19:

The first measurement of correlation between three flow amplitudes $SC(k,l,m) = \langle v_k^2 v_l^2 v_m^2 \rangle - \langle v_k^2 v_l^2 \rangle \langle v_m^2 \rangle - \langle v_k^2 v_m^2 \rangle \langle v_l^2 \rangle$ $-\langle v_l^2 v_m^2 \rangle \langle v_k^2 \rangle + 2 \langle v_k^2 \rangle \langle v_l^2 \rangle \langle v_m^2 \rangle$

 $\operatorname{NSC}(k, l, m) = \frac{\operatorname{SC}(k, l, m)}{\langle v_{l}^{2} \rangle \langle v_{l}^{2} \rangle \langle v_{m}^{2} \rangle}$

SC(2,3,4) = 0 IF correlations originate from elliptic geometry only

 \rightarrow not observed

Finnish contributions:

- Harri Niemi: EKRT calculations

- DongJo Kim: ALICE

UNIVERSITY OF JYVÄSKYLÄ

Poster by

Di-jet studies by Oskari

Oskari

"Centrality dependence of di-jet invariant mass in Pb+Pb"

INSTITUTE C

UNIVERSITY OF JYVÄSKYLÄ

Di-jets in Pb+Pb : Motivation

P_{Tt} ↓ P_{Ta}

Theoretical premise:

- Di-jet production vertices may lie deeper in the medium
- => on the average, di-jet *may have* a longer in-medium path length
- => new constraints to energy loss

Probability density of finding a parton production vertex at (x,y) given in event with (left) with 8 < p_{Tt} < 15 GeV (to –x direction)

(right) with $8 < p_{Tt} < 15 \text{ GeV}$ and back-to-back hadron with $4 < p_{Ta} < 6 \text{ GeV}$

(1/N) dN/dA

Di-jets in Pb+Pb : Motivation

Experimentally known:

Di-jet partner heavily supressed in Pb+Pb => clear imbalance => mass modified

<mark>ог</mark>

0.2

0.4

 $A_I =$

0.6

0.8

Α.

Sami Räsänen - Particle Physics Day 2019

UNIVERSITY OF JYVÄSKYLÄ

Di-jet mass analysis in ALICE

Di-jet invariant mass:

$$M_{jj}^2 = m_1^2 + m_2^2 + 2(m_{T1}m_{T2}\cosh(\Delta y) - p_{T1}p_{T2}\sin(\Delta \phi))$$

$$\approx 2 p_{T1}p_{T2}(\cosh(\Delta \eta) - \sin(\Delta \phi)) \xrightarrow{\text{ideal 2-to-2}} 4p_T^2$$

ATLAS PRL105, 252303 : E_{T1} > 100 GeV and E_{T2} > 25 GeV CMS PLB712, 176 : p_{T1} > 130 GeV and p_{T2} > 30 GeV

ALICE $p_{T1,2} > 20$ GeV in pp, p+Pb; to be studied in Pb+Pb \Leftrightarrow push down to low masses

Current situation:

- Study cold nuclear matter effects with R_{pA}
- p+Pb and pp results close to final
- Response matrix and MC data (Figure) approved

UNIVERSITY OF IYVÄSKYLÄ

ALICE upgrade at LS2

Finnish contributions:

- QA of GEM foils used in the readout of the new ALICE TPC at HIP detector lab (finished in 2017)
- Fast Interaction Trigger (FIT) detector upgrade
 - CERN level project leadership, conceptual design of the detector!

•

The main Finnish contribution¹²

UNIVERSITY OF JYVÄSKYLÄ

FIT consists of:

- Timing detector FT0
- Large acceptance scintillator array FV0, particularly for centrality
- Forward Diffractive detector FDD

FIT – commissioning in time

UNIVERSITY OF JYVÄSKYLÄ

FVO scintillators arrived to CERN

FTO-C integrated with MFT barrel

FTO-A frame ready for assembly

FIT – Finnish team at the moment

<image>

Maciej

Versatile tasks in commissioning

- Simulations of performance of FIT
- FIT-TO MCP-PMT characterization
- FIT-V0 geometry to O²
- raw data from FIT, detector level code
- event plane and centrality resolution studies

FIT – Finnish team at the moment

Develop Detector Control System (DCS):

- Now: communication between FIT front end electronics (Processing Module, PM) and control server
- Example: control panel of FIT PM \rightarrow

Event plane studies:

- Determination and resolution
- Detector calibration
- Together with Oskari Saarimäki

e Panel Scale Help			
🛛 🕸 📲 🖓	s 🏭 兽 🖂 😉 🕂 🗖 🙆 🚑	🔎 1:1 English, US [en_US.iso88591] 👻	
PM selection 1 2 3 4 5 6 7 8 Channel selection	9 10 11 12 13 14 15 16 17 18 19 20	PM control: Update all Readout control: Update all Control: Update all	Current PM: Current ch:
1 2 3 4 5 6 7 8	9 10 11 12	Common paramers: Opdate ail	
	PM control -	Readout control	Readout status
rrg single value	Actual Settings	Actual Settings	CRU orbit
	ADC zero	Trigger respond mask	Readout mode
	ADC delay	Data bunch pattern	BCID sync mode
Reset control	ADC0 offset	Trg cont. value	CRU BC
counters	ADC1 offset	Trg cont. pattern (1)	Selector FIFO count
Reset data/TRG	ADC0 range	Trg cont. pattern (2)	Raw FIFO count
generators bunch offset	ADC1 range	Trg bunch frequency	Selector first hit DO
Reset GBT errors	Time alinement	Trg frequency offset	Selector last hit DO
Reset GBT	PM status	Data bunch frequency	Selector hits dropped
Reset orbit sync	ADC0 mean amplitude	Data frequency offset	Readout rate
Reset RX phase error	ADC1 mean amplitude	FEE ID	RX phase
Data generator	ADC0 zero level	Max RDH payload	
No generator	ADC1 zero level	CRU trg compare delay	O Phase aligner CPLL lock
Main generator	CFD counts	PAR	1 RX wordclk ready
TX generator	Strobe counts	DET field	2 RX framecik ready
in generater	Mean time	BCID delay	3 MGT link ready
Trigger generator	Common parameters	- PM board status	4 TX reset done
No generator	Actual Settings	BC JUMP3	5 TX FSM reset done
Continuous	OR GATE	BC JUMP2	6 GBT RX ready
Readout command		BC JUMP1	7 GBT RX error detected
SOC EOC	CFD SATR	GBTRX err [] Lock320	8 GBT RX error latch
SOT EOT	BOARD STATUS	GBTRX ready	9 RX phase error

Event plane determination

Reaction plane Ψ_{R} = plane determined by impact parameter and beam

- Ψ_{R} cannot be determined experimentally
- Fluctuations => Participant Plane Ψ_{PP} != Ψ_{R}

=> observed flow coefficient v_n needs to be corrected

Experimentally one measures flow vectors with components:

$$Q_{n,x} = \sum_{i \in particles} w_i \cos(n\phi_i) \quad ; \ Q_{n,y} = \sum_{i \in particles} w_i \sin(n\phi_i)$$

Where (most often) weight $w_i = 1$ or $p_{T,i}$. Event Plane (EP) angles ψ_n :

$$\psi_n = \frac{1}{n} \tan^{-1} \left(\frac{Q_{n,y}}{Q_{n,x}} \right)$$

Typical language, when power *n* not stated: ("event plane") = ψ_2

Event plane resolution

UNIVERSITY OF JYVÄSKYLÄ

With event plane angles, *observed* flow coefficients:

$$v_n^{obs} = \langle \cos(n(\phi_i - \psi_n)) \rangle$$

However, since $\psi_n \mathrel{!=} \Psi_R$, the flow coefficient needs to be corrected with resolution parameter

$$v_n^{true} = \frac{v_n^{obs}}{R_n^{true}}$$

where true event plane resolution

$$R_n^{true} = \left\langle \cos \left(n (\psi_n - \Psi_R) \right) \right\rangle$$

We still have unmeasurable $\Psi_{\rm R}$. Get rid of with *sub event method* such that $R_n^{true} \approx R_n^{sub}$. Details of the method not discussed here.

S.A. Voloshin *et al.*, Landolt-Bornstein 23 (2010) 293-333, arXiv: 0809.2949 [nucl-ex]

07.11.2019

Toy Monte Carlo simulation

UNIVERSITY OF JYVÄSKYLÄ

Validate flow methods with toy MC simulation:

- Semi-realistic input for
 - multiplicity as function of centrality
 - flow coefficients and rapidity distribution
 - https://github.com/hrytkone/ToyFlow
- Generate events and find "detector hits"
- In the Monte Carlo simulation, we know non-measurable true values v_n^{input} , v_n^{true} , R_n^{true}
- Construct with flow methods measurable values v_n^{obs} , R_n^{sub} and $v_n^{cor} = v_n^{obs} / R_n^{sub}$.
- Add detector properties, like finite granularity of FV0 detector (Figures)

centrality

centralit

Towards full detector simulations

Status at the moment:

- Flow methods are validated with simple Monte Carlo
- True Monte Carlo + full detector simulations in ALICE O² framework
 - => realistic hit maps and signals in the detectors
- Need (fairly) significant CPU-time to produce enough heavy ion events (JU cluster/CSC/GRID?)
- Next step: compare Monte Carlo truth to detector level simulation

Event plane information in ALICE

- Note: modern flow analysis with cumulants, two-particle correlations or scalar product methods (most often) does not explicit reconstruction of events planes $\psi_{2,3}$.
- Need comes in analysis where one aims to study flow of a rare probes when aforementioned methods do not work.
- Finnish team aims to take the responsibility over on-line / offline framework (=ALICE O²) code of the FIT event plane determination with FIT subdetectors and their combinations.
- With real detector, calibration constants needs to be determined period-by-period. For example, gain of the FV0 sectors need to be equalized to avoid artificially preferred direction ("event plane flattening").

Selyuzhenkov and Voloshin, Phys.Rev.C77 (2008) 034904

Example: charged jet v₂ used V0 event plane to avoid autocorrelations

ALICE Collaboration, Phys.Lett. B 753 (2016) 511-525

OUTLOOK : ALICE upgrade at LS3

NEW ITS3:

- Replace inner barrel of ITS
- 3 truly cylindrical layers, thickness 20-40 μm
- All material at r < 4 cm with $X_0 \approx 0.3 \%$
- LoI: ALICE-PUBLIC-2018-013

NEW Forward Calorimeter (FoCal):

- Rapidity range $3 < \eta < 5$
- High granularity EMCal for π^0 and γ
- HCal for isolation, both for jets
- Lol in preparation, Finland interested

- LHC in middle of the LS2, Run 3 starting 2021
- FIT in construction and commissioning phase Finland: characterization, raw data, geometry, DCS, event plane, ...
- Physics data analysis: high-order flow harmonics, di-jet mass analysis

UNIVERSITY OF JYVÄSKYL

BACKUP

ALICE @ QM19 : Hypertriton

- Tracking capabilities and large data sample open unique possibilities
- Exotic nuclei are one of the key motivations for ALICE in Run 3 and 4

UNIVERSITY OF IYVÄSKYLÄ

INSTITUTE O

ALICE @ QM19 : Flow studies

Talk: Jasper Parkkila @ QM19

First observation:

we chosen different results Mass ordering of non-linear flow coefficients

$$\frac{dN}{d\phi} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos(n(\phi - \psi_n))$$
$$V_n = V_n^L + (V_n^{N-L}), \qquad V_n = v_n e^{in\psi_n}, n > 3$$

Here: "non-linear contribution from 2nd and 3rd order flow to 5th order."

(PPD 18 @ Jyväskylä, unidentified coefficients)

UNIVERSITY OF JYVÄSKYLÄ

ALICE @ QM19 : Jets

"Jet machines" CMS and ATLAS beat us in acceptance, luminosity, HCAL, ... => In my opinion, ALICE has for example following natural directions:

Very low *p*_{T,jet} with Machine Learning ...

 δp_T = ((jet area)x(density) by FastJet) - (sum p_T in random cone), measures fluctuations of background determination in Pb+Pb

д А

1.4

12

ALICE Pb-Pb 5.02 TeV, 0-10%

ML estimator trained on PYTHIA

Charged jets, anti- $k_{\rm T}$, R = 0.4, $|\eta_{\rm iet}| < 0.5$

UNIVERSITY OF IYVÄSKYLÄ

have chosen different results

ALICE @ QM19 : Jets

... or hadron-jet correlations : novel way to subtract the background

have chosen different results Δ_{recoil} = (jets associated with high- p_{T} trigger hadron) - (jet associated with low- p_{T} trigger), such that jet is back-to-back with the trigger hadron

Different person would

UNIVERSITY OF JYVÄSKYLÄ

ALICE @ QM19 : Jets

... or particle identification of constituents :

Here D0 fragmentation functions in pp @ 5.02 TeV: - generators agree at high- p_{T} , at low tension?

INSTITUTE OF

UNIVERSITY OF JYVÄSKYLÄ

FIT – commissioning in time

FV0 in-beam sector test completed

FITA mockup ready

UNIVERSITY OF JYVÄSKYLÄ

FITC fully assembled

FDD prototype test at CERN

INSTITUTE C

FoCal upgrade for Run 4

Forward calorimeter at $3 < \eta < 5$:

- Letter of Intent in preparation in ALICE
- High-granularity EMCal for π^0 and photon measurements, HCal for photon isolation, both for forward jets
- Small-x physics
- Good synergy with theory group:
 - CGC studies enter to saturation region (prof. Tuomas Lappi)
 - Nuclear PDF's constraints to gluon distributions (prof. Kari Eskola)
- One feasible analysis topics to Jyväskylä
 - Forward π^0 - π^0 or forward π^0 central hadron correlations (CGC)

Timetable:

- FoCal is not yet approved in ALICE
- First prototype of EMCal has first test beam results
- Commissioning during 2024-2025 (LS3), running 2026-2028 (Run 4)