Dark matter searches

Matti Heikinheimo

University of Helsinki and HIP

Particle physics day, November 7, 2019

- The existence of dark matter is confirmed via multiple independent observations:
 - Galactic rotation curves and velocity dispersions.
 - Gravitational lensing of galaxy clusters.
 - CMB power spectrum.
 - Structure formation.
- All of these observations are based on the gravitational interactions between DM and visible matter.

- The existence of dark matter is confirmed via multiple independent observations:
 - Galactic rotation curves and velocity dispersions.
 - Gravitational lensing of galaxy clusters.
 - CMB power spectrum.
 - Structure formation.
- All of these observations are based on the gravitational interactions between DM and visible matter.

- The existence of dark matter is confirmed via multiple independent observations:
 - Galactic rotation curves and velocity dispersions.
 - Gravitational lensing of galaxy clusters.
 - CMB power spectrum.
 - Structure formation.
- All of these observations are based on the gravitational interactions between DM and visible matter.

- The existence of dark matter is confirmed via multiple independent observations:
 - Galactic rotation curves and velocity dispersions.
 - Gravitational lensing of galaxy clusters.
 - CMB power spectrum.
 - Structure formation.
- ▶ All of these observations are based on the **gravitational** interactions between DM and visible matter.

- To understand the role of the DM particle in the context of particle physics theory, we would like to know something about its non-gravitational interactions.
- ▶ A nice feature of WIMPs is that their abundance is determined via their scattering with the SM particles.
- ► Therefore WIMPs should be observable with direct detection, indirect detection and collider experiments.

Indirect detection

- Indirect detection refers to the attempts to observe the annihilation products of DM particles.
- ▶ For WIMPs the annihilation cross section σ_A determines the abundance, so the indirect detection signal is directly linked to the production of DM in the early universe:

$$\begin{split} \Omega_\chi h^2 \sim \frac{3\times 10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1}}{\langle \sigma_A v \rangle_\mathrm{fo}} \\ \frac{dN}{dA\,dt\,d\Omega\,dE} = \frac{\langle \sigma_A v \rangle_0}{2m_\chi^2} \frac{dN_x}{dE} \frac{1}{4\pi} J_A(\psi), \qquad J_A(\psi) = \int\limits_{\mathrm{los}} \rho_\chi^2(\psi,\ell) d\ell. \end{split}$$

Indirect detection

Indirect detection experiments search for gamma-ray photons, neutrinos, or cosmic rays (charged particles).

Particle	Experiments	Advantages	Challenges	
Gamma-ray [†]	Fermi LAT, GAMMA-400,	point back to sources,	backgrounds, attenua-	
photons	H.E.S.S.(-II), MAGIC,	spectral signatures	tion	
	VERITAS, HAWC, CTA			
Neutrinos	IceCube/DeepCore/PINGU,	point back to sources,	backgrounds, low	
	ANTARES/KM3NET,	spectral signatures	statistics	
	BAIKAL-GVD, Super-			
	Kamiokande/Hyper-			
	Kamiokande			
Cosmic rays	PAMELA, AMS-02, ATIC,	spectral signatures,	diffusion, do not point	
	IACTs, Fermi LAT, Auger,	low backgrounds for	back to sources	
	CTA, GAPS	antimatter searches		

There have been some excess signals, but not definite observations:

- lacktriangle Fermi LAT Galactic center excess ('Hooperon', $\chi\chi o bar{b}$, $m_\chi\sim 50$ GeV)
- ▶ 3.5 keV X-rays. (Decaying DM, $m_{\chi} \sim 7$ keV.)
- ► AMS antiprotons. (Could fit with 'Hooperon')
- •

Indirect detection limits

Direct detection

- Direct detection experiments look for DM scattering off the nucleus of the target material, by detecting the nuclear recoil (typically via scintillation light, electric signal or phonons).
- ► The event rate depends on the DM-nucleus scattering cross section, and the velocity distribution of DM:

$$\frac{dR}{dE_r} = \frac{\rho_0 M}{m_N m_\chi} \int_{v_{\rm min}}^{v_{\rm esc}} v f(v) \frac{d\sigma}{dE_r} dv, \qquad v_{\rm min} = \sqrt{\frac{E_r m_N}{2\mu_{N\chi}^2}}.$$

Direct detection experiments

				_
Experiment	Type	Target	Mass [kg]	Laboratory
ANAIS-112	Crystal	NaI	112	Canfranc
CDEX-10	Crystal	Ge	10	CJPL
CDMSLite	Cryogenic	Ge	1.4	Soudan
COSINE-100	Crystal	NaI	106	YangYang
CRESST-II	Cryogenic	$CaWO_4$	5	LNGS
CRESST-III	Cryogenic	$CaWO_4$	0.024	LNGS
DAMA/LIBRA-II	Crystal	NaI	250	LNGS
DarkSide-50	TPC	Ar	46	LNGS
DEAP-3600	Single phase	Ar	3300	SNOLAB
DRIFT-II	Directional	CF_4	0.14	Boulby
EDELWEISS	Cryogenic	Ge	20	LSM
LUX	TPC	Xe	250	SURF
NEWS-G	Gas Counter	Ne	0.283	SNOLAB
PandaX-II	TPC	Xe	580	CJPL
PICASSO	Superheated Droplet	C_4F_{10}	3.0	SNOLAB
PICO-60	Bubble Chamber	C_3F_8	52	SNOLAB
SENSEI*	CCD	Si	9.5×10^{-5}	FNAL
$SuperCDMS^*$	Cryogenic	Si	9.3×10^{-4}	above ground
XENON100	TPC	Xe	62	LNGS
XENON1T	TPC	Xe	1995	LNGS
XMASS	Single phase	Xe	832	Kamioka

Direct detection

- ► The exclusion limit is typically presented in the $(m_\chi, \sigma_{\chi n})$ -plane, where the cross section refers to a given scattering operator.
- The simplest operator is the scalar (Spin-Independent) operator. Arising from e.g. $\bar{\chi}\chi\bar{q}q$.

$$\frac{d\sigma}{dE_r} = \sigma_{\chi n} \frac{A^2 m_N}{2v^2 \mu_{n\chi}^2} F^2(E_r)$$

Direct detection

Limits for spin-dependent couplings can be extracted separately for $\chi-p$ and $\chi-n$ scattering cross sections

The neutrino floor

- Solar and cosmic neutrinos form an irreducible background for the standard direct detection experiments.
- ▶ DM-nucleon cross sections below the neutrino floor can not be probed with simple counting experiments.

Modulation experiments

- ► To reach below the neutrino floor, the DM signal must somehow be differentiated from the neutrino background.
- ► The separation can be achieved via the modulation of the DM scattering event rate due to the motion of the earth in the Galactic rest frame.

$$\begin{split} \vec{v}_{\rm lab} &= \vec{v}_{\rm circ} + \vec{v}_{\rm sol} + \vec{v}_{\rm rev} + \vec{v}_{\rm rot}, \\ v_{\rm circ} &\sim 220\,{\rm km\,s^{-1}},\ v_{\rm sol} \sim 18\,{\rm km\,s^{-1}},\ v_{\rm rev} \sim 30\,{\rm km\,s^{-1}}, \\ v_{\rm rot} &\sim 0.5\,{\rm km\,s^{-1}}. \end{split}$$

Annual modulation (of order \sim 5%) is expected due to the variation in $v_{\rm lab}$ as $\vec{v}_{\rm rev}$ and $\vec{v}_{\rm circ}$ are aligned/antialigned during the year.

- ▶ The rotation speed $v_{\rm rot}$ is small compared to the other components, and the daily modulation induced by the variation of $v_{\rm lab}$ due to $v_{\rm rot}$ is negligible.
- ▶ However, the rotation changes the direction of $\vec{v}_{\rm lab}$ significantly during the day.

- ▶ If the DM scattering rate depends on the recoil direction, as is generally the case in crystalline materials, the rotation of the 'DM wind' induces a daily modulation in the event rate.
- ► The dependence on the scattering rate is a threshold effect: the creation threshold for an observable signal depends on the recoil direction with respect to the crystal lattice.
- ► For heavy DM particles the effect is small, since the event rate is dominated by events far above the threshold.

As the direction to the sun in the lab-frame varies during the day, the solar neutrino background will also exhibit a daily modulation signal: However, the structure and phase of the neutrino modulation differs from the DM signal: (PRELIMINARY RESULTS)

DM-electron scattering

- ► For very light DM, nuclear recoils become inefficient due to the energy threshold.
- DM-electron scattering could allow probing DM well below the GeV-scale.
- ► The electron band structure in a crystal is not spherically symmetric, resulting in daily modulation as discussed above.
- ➤ Various materials have been proposed for targets of DM-electron scattering: semiconductors, graphene, nanowires, dirac metals...
- ► Feasibility for large scale experiments still to be demonstrated.

Conclusions

- ▶ Direct and indirect DM searches are effectively closing the WIMP-window for $m_{\chi} \sim$ few GeV few hundred GeV.
- For light DM $m_\chi \lesssim 10$ GeV the constraints are less severe. (But the neutrino floor is higher).
- Daily modulation due to directional threshold effects could allow to probe light DM below the neutrino floor.
- Theoretical studies underway, no serious daily modulation experiments yet running.

