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Introduction

» The existence of dark matter is confirmed via multiple independent
observations:
» Galactic rotation curves and velocity dispersions.
> Gravitational lensing of galaxy clusters.
> CMB power spectrum.
» Structure formation.

» All of these observations are based on the gravitational interactions
between DM and visible matter.
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Introduction

» To understand the role of the DM particle in the context of particle
physics theory, we would like to know something about its

non-gravitational interactions.

» A nice feature of WIMPs is that their abundance is determined via
their scattering with the SM particles.

» Therefore WIMPs should be observable with direct detection,
indirect detection and collider experiments.
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Indirect detection

» Indirect detection refers to the attempts to observe the annihilation
products of DM particles.

» For WIMPs the annihilation cross section o4 determines the
abundance, so the indirect detection signal is directly linked to the
production of DM in the early universe:
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Indirect detection

Indirect detection experiments search for gamma-ray photons, neutrinos,

or cosmic rays (charged particles).

Particle Experiments Advantages Challenges
Gamma-ray!  Fermi LAT, GAMMA-400, point back to sources, backgrounds, attenua-
photons H.E.S.S.(-1I), MAGIC, spectral signatures tion
VERITAS, HAWC, CTA
Neutrinos IceCube/DeepCore/PINGU,  point back to sources, backgrounds, low
ANTARES/KM3NET, spectral signatures statistics
BAIKAL-GVD, Super-
Kamiokande/Hyper-
Kamiokande

Cosmic rays

PAMELA, AMS-02, ATIC,
TIACTs, Fermi LAT, Auger,
CTA, GAPS

spectral  signatures,
low backgrounds for
antimatter searches

diffusion, do not point
back to sources

There have been some excess signals, but not definite observations:

> Fermi LAT Galactic center excess ('Hooperon', xx — bb, m, ~ 50 GeV)

» 3.5 keV X-rays. (Decaying DM, m, ~ 7 keV.)
» AMS antiprotons. (Could fit with "Hooperon')

>



Indirect detection limits
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Direct detection

» Direct detection experiments look for DM scattering off the nucleus
of the target material, by detecting the nuclear recoil (typically via
scintillation light, electric signal or phonons).

» The event rate depends on the DM-nucleus scattering cross section,
and the velocity distribution of DM:
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Direct detection experiments

Experiment Type Target  Mass [kg] Laboratory
ANAIS-112 Crystal Nal 112 Canfranc
CDEX-10 Crystal Ge 10 CJPL
CDMSLite Cryogenic Ge 1.4 Soudan
COSINE-100 Crystal Nal 106 YangYang
CRESST-II Cryogenic CaWOy 5 LNGS
CRESST-III Cryogenic CaWOy 0.024 LNGS
DAMA/LIBRA-II  Crystal Nal 250 LNGS
DarkSide-50 TPC Ar 46 LNGS
DEAP-3600 Single phase Ar 3300 SNOLAB
DRIFT-II Directional CFy 0.14 Boulby
EDELWEISS Cryogenic Ge 20 LSM

LUX TPC Xe 250 SURF
NEWS-G Gas Counter Ne 0.283 SNOLAB
PandaX-I1 TPC Xe 580 CJPL
PICASSO Superheated Droplet C4F1g 3.0 SNOLAB
PICO-60 Bubble Chamber C3Fg 52 SNOLAB
SENSEI* CCD Si 9.5x107% FNAL
SuperCDMS* Cryogenic Si 9.3x10™* above ground
XENON100 TPC Xe 62 LNGS
XENONIT TPC Xe 1995 LNGS

XMASS Single phase Xe 832 Kamioka




Direct detection

» The exclusion limit is typically presented in the (m,, oy,)-plane,
where the cross section refers to a given scattering operator.

» The simplest operator is the scalar (Spin-Independent) operator.
Arising from e.g. Xxggq.
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Direct detection

Limits for spin-dependent couplings can be extracted separately for y — p
and x — n scattering cross sections
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The neutrino floor

» Solar and cosmic neutrinos form an irreducible background for the
standard direct detection experiments.

» DM-nucleon cross sections below the neutrino floor can not be
probed with simple counting experiments.
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Modulation experiments

» To reach below the neutrino floor, the DM signal must somehow be
differentiated from the neutrino background.

» The separation can be achieved via the modulation of the DM

scattering event rate due to the motion of the earth in the Galactic
rest frame.

Viab = Vcirc + Vsol + Vrev + Viot,

Veire ~ 220kms™1, vgo) ~ 18kms™?1, vyey ~ 30kms1,
Viot ~ 0.5kms~L.

» Annual modulation (of order ~ 5%) is expected due to the variation
iN Viab as Viey and V. are aligned/antialigned during the year.
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Daily modulation

» The rotation speed v, is small compared to the other components,
and the daily modulation induced by the variation of v, due to vy
is negligible.

» However, the rotation changes the direction of v, significantly
during the day.

Sun
DM wind




Daily modulation

» If the DM scattering rate depends on the recoil direction, as is
generally the case in crystalline materials, the rotation of the 'DM
wind’ induces a daily modulation in the event rate.

» The dependence on the scattering rate is a threshold effect: the
creation threshold for an observable signal depends on the recoil
direction with respect to the crystal lattice.

» For heavy DM particles the effect is small, since the event rate is
dominated by events far above the threshold.




Daily modulation
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Daily modulation

As the direction to the sun in the lab-frame varies during the day, the
solar neutrino background will also exhibit a daily modulation signal:
However, the structure and phase of the neutrino modulation differs from
the DM signal: (PRELIMINARY RESULTS)

Nevents (Normalised)




DM-electron scattering

» For very light DM, nuclear recoils become inefficient due to the
energy threshold.

» DMe-electron scattering could allow probing DM well below the
GeV-scale.

» The electron band structure in a crystal is not spherically symmetric,
resulting in daily modulation as discussed above.

» Various materials have been proposed for targets of DM-electron
scattering: semiconductors, graphene, nanowires, dirac metals...

» Feasibility for large scale experiments still to be demonstrated.



Conclusions

» Direct and indirect DM searches are effectively closing the
WIMP-window for m, ~ few GeV - few hundred GeV.

» For light DM m, < 10 GeV the constraints are less severe. (But the
neutrino floor is higher).

» Daily modulation due to directional threshold effects could allow to
probe light DM below the neutrino floor.

» Theoretical studies underway, no serious daily modulation
experiments yet running.
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