

Higgs inflation: connecting electroweak physics to inflation

(work with Vera-Maria Enckell, Kari Enqvist, Sami Raatikainen, Eemeli Tomberg and Lumi-Pyry Wahlman)

Syksy Räsänen

University of Helsinki
Department of Physics and Helsinki Institute of Physics

Using what you have

$$S = \int d^4x \sqrt{-g} \left[\frac{M_{\rm Pl}^2 + \xi h^2}{2} R - \frac{1}{2} g^{\alpha\beta} \partial_{\alpha} h \partial_{\beta} h - V(h) \right]$$

$$V(h) = \frac{\lambda}{4}(h^2 - v^2)^2 \simeq \frac{\lambda}{4}h^4$$

- Non-minimal coupling $\xi h^2 R$ is the only new dimension 4 term for the combined Einstein-Hilbert + SM action.
- The coupling ξ is generated by renormalisation, even if it is classically zero.
- Non-minimal coupling enables Higgs inflation, which uses the only known scalar field that may be elementary. (Bezrukov and Shaposhnikov: 0710.3755)



When the action is not enough



$$S = \int d^4x \sqrt{-g} \left[\frac{M_{\rm Pl}^2 + \xi h^2}{2} R - \frac{1}{2} g^{\alpha\beta} \partial_{\alpha} h \partial_{\beta} h - V(h) \right]$$

$$V(h) = \frac{\lambda}{4}(h^2 - v^2)^2 \simeq \frac{\lambda}{4}h^4$$

- Complication: classical low-energy action is not enough to specify the theory.
- Two sources of ambiguity.
 - Quantum theory: how to calculate loop corrections?
 - General relativity: what are the gravitational degrees of freedom?

Two aspects of spacetime

- There are different formulations of general relativity (GR).
- They are not modified theories, but alternative theories.
- In general, metric and connection are independent degrees of freedom.
- Metric describes distances in spacetime and inner products of vectors.
- Connection describes straight lines in spacetime and derivatives of vectors.

Metric and Palatini

 One formulation of GR is the metric formulation (1915), where the connection is defined in terms of the metric.

- Another is the Palatini formulation (1925), where the connection is determined by the field equations, instead of being constrained a priori.
- For the Einstein-Hilbert action R, the formulations are equivalent.

Higgs breaks the equivalence

- Different formulations of GR are inequivalent if the gravity action is more complicated than R or matter couples to the connection.
- Higgs exists, so nature is described by a scalartensor theory.
- Higgs couples to the connection, breaking the equivalence between the formulations. (Bauer and Demir: 0803.2664)

Two faces of Einstein gravity

$$S = \int d^4x \sqrt{-g} \left[\frac{1 + \xi h^2}{2} g^{\alpha\beta} R_{\alpha\beta}(\Gamma, \partial \Gamma) - \frac{1}{2} g^{\alpha\beta} \partial_{\alpha} h \partial_{\beta} h - V(h) \right]$$

- The Einstein frame is reached with the conformal transformation $g_{\alpha\beta} \to (1+\xi h^2)^{-1} g_{\alpha\beta}$
- In the Palatini case, the conformal transformation does not affect the Ricci tensor.
- To recover canonical kinetic term, define new field χ :

$$\text{ metric: } \frac{\mathrm{d}\chi}{\mathrm{d}h} = \sqrt{\frac{1+\xi h^2+6\xi^2h^2}{(1+\xi h^2)^2}} \simeq \frac{\sqrt{6}}{h} \Rightarrow h \propto e^{\chi/\sqrt{6}}$$

• Palatini:
$$\frac{\mathrm{d}\chi}{\mathrm{d}h} = \sqrt{\frac{1+\xi h^2}{(1+\xi h^2)^2}} \simeq \frac{1}{\sqrt{\xi}h} \Rightarrow h \propto e^{\sqrt{\xi}\chi}$$

Polynomials are transformed into sums of exponentials.

Two faces of Einstein gravity

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2} g^{\alpha\beta} R_{\alpha\beta}(\Gamma, \partial \Gamma) - \frac{1}{2} g^{\alpha\beta} \frac{\partial_{\alpha} h \partial_{\beta} h}{1 + \xi h^2} - \frac{V(h)}{(1 + \xi h^2)^2} \right]$$

- The Einstein frame is reached with the conformal transformation $g_{\alpha\beta} \to (1+\xi h^2)^{-1} g_{\alpha\beta}$
- In the Palatini case, the conformal transformation does not affect the Ricci tensor.
- To recover canonical kinetic term, define new field χ :

• metric:
$$\frac{\mathrm{d}\chi}{\mathrm{d}h} = \sqrt{\frac{1+\xi h^2+6\xi^2h^2}{(1+\xi h^2)^2}} \simeq \frac{\sqrt{6}}{h} \Rightarrow h \propto e^{\chi/\sqrt{6}}$$

• Palatini:
$$\frac{\mathrm{d}\chi}{\mathrm{d}h} = \sqrt{\frac{1+\xi h^2}{(1+\xi h^2)^2}} \simeq \frac{1}{\sqrt{\xi}h} \Rightarrow h \propto e^{\sqrt{\xi}\chi}$$

Polynomials are transformed into sums of exponentials.

Higgs potential in Metric vs Palatini

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2}R - \frac{1}{2}g^{\alpha\beta}\partial_{\alpha}\chi\partial_{\beta}\chi - U(\chi) \right]$$

 We get a different Einstein frame potential depending on the formulation of GR:

• metric:
$$U(\chi) \equiv \frac{V[h(\chi)]}{[1+\xi h(\chi)^2]^2} \simeq \frac{\lambda}{4\xi^2} (1-2e^{-\frac{2}{\sqrt{6}}\chi})$$

• Palatini:
$$U(\chi) \simeq \frac{\lambda}{4\xi^2} (1 - 8e^{-2\sqrt{\xi}\chi})$$

The potential is exponentially flat.

Predictions of Higgs inflation on the plateau

Predictions for inflation depend on reheating.

• This is the SM, so reheating is known. (Garcia-Bellido, Figueroa and Rubio: 0812.4624, Rubio and Tomberg: 1902.10148)

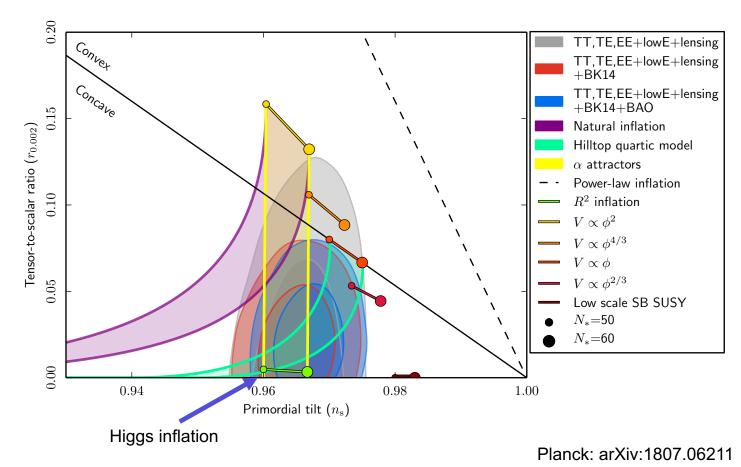
• metric: $n_s=0.96$, $r=5\times 10^{-3}$ $\xi=4\times 10^4\sqrt{\lambda}$

• Palatini: $n_s = 0.96, \ r = \frac{8 \times 10^{-4}}{\xi} = \frac{8 \times 10^{-14}}{\lambda}, \ \xi = 10^{10} \lambda$



The data likes Higgs inflation





Renormalising the non-renormalisable

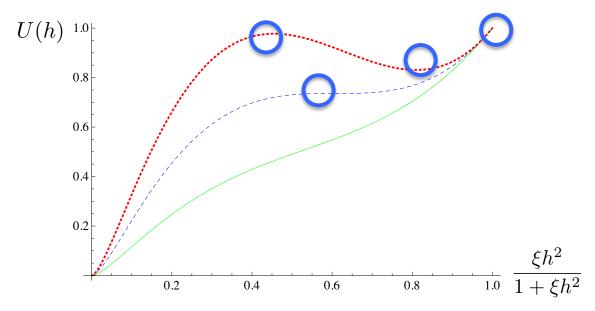
- Dimension 4 is key for flat potential: $U(\chi) = \frac{V[h(\chi)]}{[1 + \xi h(\chi)^2]^2} \simeq \frac{\frac{\lambda}{4}h^4}{\xi^2h^4}$
- Due to loop corrections, inflationary predictions in principle depend on Higgs and top mass.
 - Consistency condition between cosmology and colliders?
- Due to gravity, the theory is not renormalisable.
 - Loop corrections boil down to prescriptions.
- Perturbative unitarity is violated at scales below M_{Pl} : $1/\xi \; (\text{metric}) \; \text{or} \; 1/\sqrt{\xi} \; (\text{Palatini}) \sim 10^{14} \; \text{GeV}$
- Loop corrections can also open up new inflation regimes.

Higgs window to gravity

- Higgs inflation is a minimal bottom-up scenario for particle physics and gravity, using only known degrees of freedom.
- Different formulations of GR become inequivalent as Higgs couples to the connection.
- Predictions of Higgs inflation depend on the choice of theory of gravity and loop corrections.
 - Observations can tell what are the gravitational degrees of freedom.
- Different results for teleparallel formulation, loop quantum gravity action, ...

Backup slides

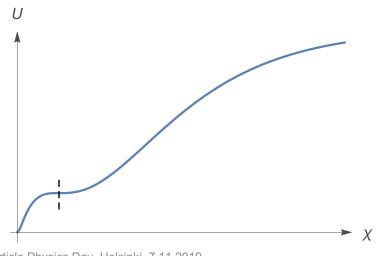
Loop-corrected potential



- Different inflationary possibilities:
 - Plateau: apparently not spoiled by loops.
 - Inflection point: can give $r \sim 0.1$.
 - False vacuum: new physics needed for graceful exit.
 - Hilltop: can give even smaller *r* than plateau.

A feature below the plateau

- We want to produce CMB perturbations on the plateau and have a slow-down feature at smaller field values.
- This can be generated by Standard Model loop corrections.



Black hole dark matter

- Loop corrections can be used to produce dark matter from the Higgs. (SR and Tomberg: 1810.12608)
- This requires a feature in the potential that slows down the field, enhancing perturbations.
- Once the perturbations re-enter Hubble radius after inflation, they collapse into black holes (BHs).
- These then evaporate down to Planck-scale relics.
- The relic BHs can be all of the dark matter.