CMS+TOTEM experimental overview

S.Lehti, HIP

Long shutdown 2

- Challenges in 2021-2023
 - High trigger rates
 - Large pileup over long time
 - Radiation damage

Run-2

CMS Integrated Luminosity, pp, $\sqrt{s} = 13$ TeV

CMS Average Pileup (pp, \sqrt{s} =13 TeV)

	162 8 fb ⁻¹	150 2 fb ⁻¹	92%
2018	66.9 fb ⁻¹	62.8 fb ⁻¹	94%
2017	50.3 fb ⁻¹	45.4 fb ⁻¹	90%
2016	41.1 fb ⁻¹	37.8 fb ⁻¹	92%
2015	4.2 fb ⁻¹	3.8 fb ⁻¹	90%
CMS	delivered	recorded	

- CMS data in Run-2
 - Excellent quality
 - Taken with evolving detector configuration (pixel, HCAL readout)

The detectors are alive...

Fraction of active detector channels in many subsystems at the end of LHC Run-2 still larger than 95%

CMS Plans for LS2

CMS Pixel

facts about CMS pixel

- installed in 2017
- powering via DC-DC converters
- DC-DC chip: CERN development, used in many phase-2 upgrade projects

experience from last 2 years

- massive DC-DC converter failure end of 2017
- problem understood in 2018 and no problems until the end of Run-2

replacement of converters (among other activities) during LS2

CMS Hadronic Calorimeter

CMS Hadronic Calorimeter

CMS Muon System New GEM Detectors

redundant muon system

- GEM muon detectors complete redundancy in 1.6<|η|<2.2
- 72 detector chambers per detector endcap
- first stage of phase-2 muon upgrade in forward region

improvements

- CSC+GEM measure bending angle on trigger level → reduce fakes
- better tracking performance in region with reduced bending power (p||B)

CMS Muon System New GEM Detectors

Run 2 recalibration

- Exhaustive recalibration of Run2 carried out in *UltraLegacy* 2016-2018 campaign
 - calibration and alignment of subdetectors
 - fine-tuning of reconstruction algorithms
- Data: complete reprocessing for 2016-2018, 97.5% of Run2 data (146fb-1)
- Simulation: new datasets are being produced
- Available for Physics analysis in Spring 2020

T.Lampen

Physics results from 2019

Standard Model Measurements

H 125

- LHC Run-1: discovery
- LHC Run-2: directly established couplings to 3rd generation fermions

	ggH	VBF	VH	ttH	
H→ZZ	HIG-19-001, Run 2				
Η→γγ	HIG-18-02	9, '16+'17	HIG-16-040, '16	HIG-18-018, '16+'17	
H→WW	HIG-16-042, '16				
Η→ττ	HIG-18-032, '16+'17		HIG-18-007, '16	піс-16-019, 10+17	
H→bb	HIG-16-044, '16		HIG-18-016, 16+17	HIG-18-030, '16+'17	
Н→µµ	HIG-17-019, '16				
H→cc			HIG-18-031, '16		
H→inv	HIG-17-023, '16				

Production and decay modes covered by CMS results

125

An illustration of progress in the past years: $H \rightarrow ZZ$

$$m_{\rm H} = 125.26 \pm 0.21 \ (\pm 0.20 \text{ stat.} \pm 0.08 \text{ sys.}) \text{ GeV}$$

W.Adam

Decays to 3rd generation fermions

Moving to the 2nd generation

- First CMS results on VH, H→cc
 - Highly challenging due to low cross section and need for c-tagging
- CMS results on H→µµ (2016 data), small but enhanced in some BSM scenarios
 - obs(exp) exclusion: 2.92(2.16)
 - obs(exp) significance: 0.9 (1.0) σ

Top Quark Measurements

- After its discovery ~25 years ago, the top is still one of the hottest topics
- LHC: a top quark factory

September 2019

CMS

2018/2019

Top quark mass

• Top quark mass 🛨

- Key parameter in SM, for vacuum stability
- Aiming at ±0.2 GeV at CMS in I+jet channel
- Address key systematics:b-JES,FSR,UE
- Progress on theory interpretation also important

- MSc by T.Mäkelä re-anazysed D0 m_{top} results from 2014 using now public internal D0 notes on b-JES
 - Identified possible flaws in b-JES, correcting leads to lower mass
 - Method being implemented in CMS

Jet cross sections

- Dependence of inclusive jet production on anti- k_T distance parameter (2016 data)
- Ongoing work in Helsinki
 - Full Run 2 data ultimate precision analysis of inclusive jet cross section
 - Key input for parton distribution function (PDF) at high x and strong coupling (α_{s}) at high Q
 - Gluon cross section analysis as spin-of
 - Quark-gluon likelihood maintained by Helsinki PhD student
 - Collaboration with U. Marmara on gluon cross section measurement

Observation of excited states

• Observation of the $B_c(2S)^{\pm}$ and $B_c^{*}(2S)^{\pm}$ with full Run-2 data

Result confirmed by LHCb

- Observation of Λ_{b} based on 2018 data
- Observation significance 9.7σ

Z.Hu

Very rare decays

- $B_s^0 \rightarrow \mu\mu$ and $B^0 \rightarrow \mu\mu$
 - Forbidden at tree level, only through HO diagrams
 - Cabibbo suppressed, helicity suppressed
 - But not in models with extended Higgs sectors

 $\mathcal{B}(B_s^{\ 0} \rightarrow \mu^+ \mu^-) = [2.9^{+0.7}_{-0.6} (\exp) \pm 0.2(f_s/f_u)] \times 10^{-9}$

 $B^0 \rightarrow \mu^+ \mu^-$ branching fraction:

 $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 3.6 \times 10^{-10} 95\%$ C.L.

Previous CMS result: $\mathcal{B}(B^0 \rightarrow \mu^+\mu^-) < 1.1 \times 10^{-9}$ <u>Phys. Rev. Lett. **111**, 101804</u>

Results consistent with SM predictions

Z.Hu

BSM Searches

- Resonant decays to two jets
 - Can be interpreted in a wide range of BSM models predicting particles decaying to gg,gq or qq
- SUSY searches
 - Searches for SUSY particles in Rparity conserving scenarios
 - Generic search for pair production of gluinos, squarks and stable LSP's (multijet+MET signature)
 - Stop searches in a single lepton channel
 - Searches for staus

Strong-production SUSY search

- Searching for gluino pair production, decaying to four top quarks
- Among the most sensitive analyses in final state with a single lepton; collaboration with Athens, CERN, DESY
- Plan to publish full Run 2 analysis with 2016-18 data in 2020

BSM Searches

- Neutral and charged Higgs searches in many different final states
 - $H \rightarrow Z(II)A(bb), A \rightarrow Z(II)h(\tau\tau), H \rightarrow \mu\tau/e\tau, H \rightarrow tt,...$
 - $\underline{H^+ \rightarrow \tau \nu}, H^+ \rightarrow WA, H^+ \rightarrow tb, H^+ \rightarrow WZ, ...$

Dark Matter

Totem

Low luminosity part of TOTEM including vertical RPs & their equipment **continue as a separate running experiment** until 2021-22 focusing on physics of high runs aiming for a σ_{tot} at sqrt(s) = 14 TeV (in 2021-22).

Physics priorities:

- Confirm & characterize t-channel exchange of a colourless C-odd
 3-gluon compound state
 ("Odderon") in elastic scattering.
- Glueball candidate studies (with CMS).

Detector upgrades:

new T2 telescope for measurement of $\sigma_{_{tot}}~@=14$ TeV.

Event counter at 5.3 < eta < 6.5

Colourless C-odd 3-gluon compound

□ rapidly increasing σ_{tot} & decreasing ρ in pp scattering at high energies TOTEM@ $\sqrt{s} = 13$ TeV: $\sigma_{tot} = 110.5 \pm 2.4$ mb, $\rho = 0.10 \pm \frac{EPJC}{785}$

CMS forward proton precision timing

Increase the CMS sensitivity to central exclusive processes in Run 3 (& HL-LHC?)

 precise proton arrival time measurement in CMS Proton Precision Spectrometer (PPS) allows reconstruction of proton longitudinal vertex position & associate it with particle vertices in central part (to mitigate pile-up)

Physics: anomalous quartic gauge couplings, axionlike particles, low-mass SUSY searches...

Technology: single-crystal CVD diamonds

□ Finnish responsibilities include:

- detector procurement, metallization & QA
- detector module testing & assembly

PPS @ HL-LHC ?

- A completely new system with increased radiation tolerance & timing precision requirements
- Expression of Interest to be submitted to CMS 2019

Heavy lons

- CMS has a versatile heavy flavor program in A+A
 - Quarkonia and open charm and beauty
- Redistribution of D⁰ mesons in jets
 - Observed for the first time in Pb+Pb collisions
 - J/ψ in jets (p+p) much softer than models
- D⁰ mesons from b-hadron decays
 - Strong b-quark energy loss at low pT

D0

c) PbPb

Data total D⁰
 Prompt

0.02 0.04 0.06

 D^0 DCA(cm)

From b hadrons

dN / d(D⁰ DCA) (cm⁻ 10⁻ 10⁻

0

Open Data

- First re-measurement of SM cross sections at 8 TeV using CMS Open Data
 - Precision of 2-6% reached
 - Consistent with official measurements and SM predictions
- Full 2011 and 2012 datasets available
- Analysis software: public analysis framework 'Bacon' in github

Lepton momentum scale calibrated using the Z boson invariant mass spectrum

Summary

- Upgrade of the detectors aiming partially already for HL-LHC conditions
- CMS had a very successful Run-2 with record data taking efficiency in 2018
 - H_{125} precision measurements
 - SM precision measurements
- ..but no new physics found
- Continuing the harvest based on the full LHC Run-2 dataset

Backup

TOTEM (& CMS forward physics)

✓ Forward physics experiment at LHC CMS

- total cross-section (σ_{tot})
- elastic scattering over wide |t|-range
- diffractive & exclusive processes

Detectors

- T1 & T2 for charged particles
- Roman Pots (RP) for leading protons with tracking & TOF

- TOF = Time-Of-Flight

- β^* = beam proton oscillation amplitude \propto transverse IP size

✓ CMS Precision Proton Spectrometer (PPS)

- proton tracking detectors in horizontal RPs+ TOTEM Si $\mu strips \Rightarrow$ CMS 3D Si pixels (gradual change)
- proton timing detectors in new cylindrical RP + TOTEM (double-layered) diamond detectors adapted for PPS

✓ Run scenarios:

- Special high β^* , vertical RPs $\Rightarrow \sigma_{tot}$, elastic, & low mass exclusive & diffractive processes

- Standard low β^{*} , horizontal RPs \Rightarrow high mass exclusive processes & BSM searches

continuous high luminosity data taking as integral part of CMS: fb⁻¹ in 2016-18

Helsinki detector contributions

- GEM-detectors for T2: services radiation damaged ⇒ T2 removed during YETS 2017-18
- scintillators & fibers for nT2

During LS2 new pipe beam installed in T2 region (not compatible with current T2 anyway). Prepare new scintillator-based inelastic detector ("nT2") to be installed for a = 14 TeV σ_{tot} & measurement run (expected 2021 or 2022) \Rightarrow TDR submitted to LHCC in June

diamonds for proton TOF detectors including radiation hardness characterisation

Prepare a 2^{nd} set of double-layered diamond detectors for 2 additional timing RPs to be installed for Run 3 (one RP/side of IP) \Rightarrow to improve TOF measurement to achieve 20-30 ps

PPS diamond TOF module

beam

Helsinki CMS-TOTEM priorities 2019-22

- σ_{tot} & ρ measurements at $\sqrt{s} = 0.9$ (2018 data) & 14 TeV (2021 data?) with their interpretation with respect to C-odd 3-gluon compound state t-exchange
- Studies of glueball candidates ($f_0 \& f_2$ resonances) in central exclusive production at $\sqrt{s} = 13$ TeV in 2015 & 2018 special run data
- Exclusive $\gamma\gamma$ production with PPS using full 2016-18 PPS statistics of ~110 fb⁻¹ (sensitive to anomalous quartic $\gamma\gamma\gamma\gamma$ couplings & high mass axion like particles)
- Low mass SUSY searches (especially small $|m_{LSP} m_{nLSP}|$) with PPS using full 2016-18 PPS statistics & improve CMS PPS capability for Run 3 SUSY searches

e.g. slepton production in compressed SUSY scenarios

N. Schul & K. Piotrzkowski, NP Proc. 179-180 (2008) 289; L.A. Harland-Lang, V.A. Khoze, M.G. Ryskin & M. Tasevsky, JHEP 1904 (2019) 010

*

- Extension of diamond based CMS PPS proton TOF detector for high luminosity running after LS2 in Run 3 (physics motivation: BSM searches)
- Building of TOTEMs new scintillation based T2 ("nT2") for inelastic rate measurements at \sqrt{s} = 14 TeV to determine $\sigma_{tot} \& \rho$ after LS2 (in 2021?)

*Academy of Finland FIRI infrastructure funding 330 k€ to cover HIP part of costs

Proton tagged physics @ HL-LHC

Physics motivations (300 fb⁻¹ \leftrightarrow 3000 fb⁻¹, improved low mass acceptance)

- High-mass searches: increased sensitivity to anomalous couplings (γγγγ, γγγΖ ...) by ~ a factor 10 & to couplings of axion like particles ("ALPs") by ~ a factor 4
- Higgs/EWK: measure Higgs quantum numbers in a completely independent way
- Low-mass searches: extend SUSY searches in compressed scenarios to lower masses

e.g. HL-LHC mass acceptance assuming proton detectors at 210-250 m & 400-450 m; $\beta_x^* = 0.15$ m & vertical crossing

Completely new system: new (compact?) Roman Pots @ 400 m, improved radiation hardness of the tracking detectors (3D Si detectors?), radiation hard timing detectors with ~ 5 ps timing resolution (?) ⇒ R&D required to find adequate solutions

The CMS Proton Precision Spectrometer at HL-LHC – Expression of Interest

(intended to be submitted for CMS internal review)

Physics highlight: colourless C-odd 3-gluon compund state

rapidly increasing σ_{tot} & decreasing ρ in pp scattering at high energies CERN-EP-2017-**TOTEM**@ \sqrt{s} = 13 TeV: σ_{tot} = 110.6 ± 2.4 mb, ρ = 0.10 335; accepted by

0

RRPE₁₁ (19)

(qui) 120

100 dt

110

90

80

70

60

50

40

 10^{2}

Comparison with pre-LHC models (without 3-gluon exchange): J.R. Cudell et al., PRL 89 (2002) 201801 No model able to describe simultaneously TOTEM $\sigma_{tot} \& \rho$ measurements

 $\pm 0.01/($

(RR)^dPL2 (20), (RR)^dPL2_u (17), (RR)^dPL2_u (19), (RR)^dP^{qc}L2_u (16), (RR_c)^dPL2_u (15), (RR_c)^dP^{qc}L2_u (14), RRPL2_u (19), RRP_{nf}L2_u (21) R^{qc}R_cL2^{qc} (12), RR_cL2^{qc} (15), RRL2 (18), RRL2^{qc} (17) R^{qc}R_cL^{qc} (12), R^{qc}RL^{qc} (14), RR_cL^{qc} (15), RR_cPL (19), RRL (18), RRL_{nf} (19), RRL^{qc} (17), RRPL (21) - RR(PL2) (20), RR(PL2)^{qc} (18) 0 0.16 0.15 0.14 0.13 0.12 0.11 0.1 0.09 0.08 0.07 TeV VaT 6. VaT 8. 76 TeV Te 7 TeV 8 TeV TeV TeV 0.06 × 0.05 0 0.04 10^{3} 103 10^{4} 10^{2} 10^{4} \sqrt{s} (GeV) \sqrt{s} (GeV)

Comparison with models including 3gluon exchange:

E. Martynov & B. Nicolescu, PLB 778 (2018) 414; V.A. Khoze, A.D. Martin & M.G. Ryskin, PRD 97 (2018) 034019 Adding Odderon/3-gluon texchange improves model descriptions of TOTEM $\sigma_{tot} \& \rho$

Alternative: decrease of σ_{tot} growth beyond LHC energies

Physics highlight: colourless C-odd 3-gluon compound state?

