

Swiss participation in AIDAinnova

AIDAinnova scope

AIDAinnova focusses on Strategic R&D in the pre-TDR phase

- Technology Readiness Levels 2-7
- Not yet experiment-specific: potential to unfold synergies Include some prospective R&D
- competitive call at start of project "Blue Sky", quantum sensors,...

Targeted applications

- Higgs Factories
- ALICE, LHCb LS3 pre-TDR, ATLAS & CMS LS4
- Accelerator-based neutrino experiments
- and others

AIDAinnova: Work Packages

WP5: Depleted Monolithic Active Pixel Sensors

DMAPS development

High rate & radiation: radhard (TID & NIEL) + fast resp. time + fast R/O example: LHC upgrades & FCC

concrete development lines

High granularity:

excellent spatial resolution + (fast + radhard): ex.: Belle II upgrade & future Higgs factory etc.

Foundry line	chips dev. line	charge coll.	high rate & radiation	high granularity	special aim
LFoundry 150 nm	LF-Monopix2	large electrode	х		radhard, robust
LFoundry 150 nm	LF-MPW3/4	large electrode	х	(X)	small pixels
TowerJazz 180 nm	TJ-Monopix2/3	small electrode	(X)	х	Belle II Upgrade
TowerJazz 180 nm	TJ-MALTA2/3	small electrode	х	(X)	low power
LFoundry 110 nm	ARCADIA	small electrode		х	large area, low power
TowerJazz 65 nm	TJ 65	tbd likely small		х	small feature size

WP5 convenors: Sebastian Grinstein (IFAE Barcelona), David-Leon Pohl, NW (Univ. of Bonn)

WP5: PSI activities

- PSI is partner organization in AIDAinnova WP5: Depleted Monolithic Active Pixel Sensors
- Development of radiation tolerant Depleted Monolithic Active Pixel Sensors (DMAPS) for high-rate applications
 - in close collaboration with ETH and UZH
- For future upgrades of the CMS experiment, future collider experiments, in-house experiments and other applications
- Effort started in 2018
- Evaluated different technologies, now following up two (TSI and Lfoundry110) with own submissions
- More information in this <u>Tilman Rohe's talk</u>

Pixel chip in TSI prototype run:

- 4 different pixel sizes
- Discriminator in each pixel with 3 trim bits
- External hold possible (as in R4S chip)

Motic A: Monolithic timing chip

- LF110 nm with back-side implant
- Pulse height and time of arrival is measured
- 5x5 mm² chip with different preamplifier designs

WP6:Timing detectors

WP6: Technologies for 3D and pixelated LGADs

Low Gain Avalanche Diode (LGAD) detectors proposed for timing applications: upgrades of Endcap timing layer in CMS and High Granularity Timing Detector in ATLAS.

- In WP6 pushing for higher segmentation and rad-hardness.
- LGADs with Trench-Isolated trenches (TI-LGAD)
- Resistive AC-Coupled Silicon Detectors (RSD)
 - AC-pad coupled to the resistive n+ via dielectric coupling layer
 - Not segmented gain layer: 100% fill factor
 - Radiation hardness to be evaluated
- Inverse LGAD (iLGAD):
 - multiplication region on the opposite side of the read-out electrodes

3D pixels for timing

The idea is to use a 3D based on trenches instead of columns in order to obtain a more uniform electric/weighting field between electrodes \rightarrow reduction of the dependence of timing on the impact position of particles

Interconnection technologies: wafer-to-wafer

Goal: reduce mass, i.e. thickness of pixel detectors as much as possible while keeping the benefits of the hybrid approach:

- Separate development and optimization of sensors and FE electronics allowing for best performance of FE electronic and sensor.
- Fine pitch interconnection between FE and sensor pixel with about 20 μm pitch.
- Thinning of FE and sensor parts to the minimum. Target is the development of ultra-thin hybrid pixel detectors based on:
 - $50 100 \ \mu\text{m}$ thick pixel sensor on 200 (300) mm CMOS wafers
 - ~20 μ m thick pixel FE chip thickness on 200 (300) mm CMOS

Bonn Uni and IZM

Wafer to wafer: Proof of concept for AIDAInnova

Develop dedicated CMOS Sensor wafer compatible with a pixel FE chip wafer:

- Starting point: passive CMOS sensor development on 200 mm wafer with 110/150 nm process node from Lfoundry
- Use either TimePix3 chip wafers (130 nm on 200 mm wafers) or own FE development on the same wafer as the sensor
- Develop and optimize hybridization process including thinning and interconnection from chip's backside
- Transfer process to more modern feature size pixel chips (65nm or 28 nm on 300 mm wafers) for smaller pixel pitches and faster electronics (long term, not with AIDAinnova)

WP6: ACF for pixel detector hybridization

- Bump bonding in specialized industry is costly / complex
- Alternative process: Anisotropic Conductive Films (ACF)
- Epoxy film for mechanical connection, embedded conductive particles for el. connection

Conductive

Mask-less sensor/ASIC metallization: Electroless Nickel Gold (ENIG) deposition

Sensor

Timepix3

- In-house flip-chip process
- Challenge: Optimization of ACF material and flip-chip process for fine pitch

ACF interconnect scheme Silicon sensor substrate

Conductive micro-particles

Involved groups:

• CERN: Sample preparation (metallisation), flip-chip detector assembly, testing, process optimization

- Conpart: Industrial partner / ACF supplier, R&D on micro particles, ACF characterisation, process optimization
- CNRS-LPNHE: Sensor and teststructure procurement and production, testing
- Outside AidaInnova: DESY (test beam) and Geneva (Support for flip-chip infrastructure)

WP10: Advanced mechanics for tracking and vertex detectors

- Bring to maturity CMOS-compatible Si-µ-channel fab processes
- Exploit additive manufacturing for
 - Ultra-thin metal cooling devices
 - Ceramic (composites?) cooling devices
 - Hydraulic connections and interconnections

- Ultra light structures integrating cooling features
- New approach to (natural) refrigerant fluids for warm and cold applications
- Develop instrumentation for accurate absolute position measurements on very small devices

WP10: AIDA Ultra light 3D printed cold plates @CSEM

- Additive Manufacturing technologies ("3D-printing"):
- standardised and reliable approaches to produce 3D-printed high precision micro-channel cold plates.
- Study Different metallic alloys and ceramic composites
- Investigate the minimum channel cross section attainable for a fixed channel length
- Guidelines toward engineering of the future advanced detector cooling solutions.

- Top Swiss RTO* with strong background (among others) in high precision manufacturing.
- Involved: Additive Manufacturing & Component Reliability group
- Specialist of metal printing
- Laser powder based process
- Minimum size 60-150µm, material dependent
- Minimum gap ~100µm
- Material available/underdevelopment:
 - Stainless steel: 316L, 17-4PH
 - Titanium alloys: Ti-6Al-4V, NiTi (shape memory)
 - Copper based: CuSn10
 - Aluminum based: AlSi12, Scalmalloy
 - INVAR (Fe64Ni36) → Kovar (?)
 - Metal Matrix Composite

*

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004761.

Research and Technology organization

Additional material

AIDA

The AIDAinnova call

Another call in FP8 was not obvious

• Followed intensive discussions with EC, incl. actions by the CERN directorate

Targeted Call INFRAINNOV-04-2020: Innovation pilots

HORIZON 2020

- Adressing advanced Integrated Activities (i.e. the AIDA-2020 community)
- which have reached a high level of integration and can focus on joint research: collaborative

Objectives

• Support research infrastructure networks developing and implementing a common strategy/roadmap including technological development required for improving their services through partnership with industry

5

• Support incremental innovation and cooperation with industry

Complementarity to ATTRACT (competitive, disruptive)

Increased focus on industrial partners

No Transnational Access

Proposed funding 10 M€ for 4 years

infrastructure: common interest

Felix Sefkow | April 2021

WP6: Interconnection technologies

Metal – Oxide Hybrid Bonding

_	Cu/SiO2
	Cu/SiO2
Bond Interface 1.6 um	e: ERI DBI °

Process:

- SiO2 passivation + Cu pads
- Surface planarization (CMP)
- Surface activation (plasma, chemicals)
- Room temperature bond
- Annealing 150 300°C
- 3D chip stacking: memory chips, image sensors

Motivation for DBI[®]:

- W2W , D2W
- Highest interconnect density: I/O pitch down to 1 μm
- High alignment accuracy
- No bumps, no intermetallics
- No gap no underfilling

nG IZM ASSID (Results) 0,146 nm

0,163 nm

5nm @ 100µm

High reliability

Fraunhofer IZM-ASSID: 300mm W2W Bonding with <5µm alignment accuracy

© Fraunhofer IZM

15

J. Wolf "3D System Integration Requirements and Potential Solutions", European 3D Summit, 22-24.1.2018, Dresden, Germany.

Fraunhofer test chip with 4 μ m pad /18 μ m pitch, Metal density: 4.5%

+ + + + + + + + + + + + + + + + + + +	Roughness beside TSV (Oxide) Ra	
€ . € € ⁰	Roughness on TSV (Cu) Ra	
	Planarization	

Surface preparation in nanometer range \rightarrow Atomic force microscopy

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004761.

1 5