

FCC ETH Zurich Interest

A. de Cosa, G. Dissertori, R.Wallny

Workshop on :
Fostering Swiss collaboration towards a future circular collider
7.9.2021

7. September 2021 FCC - ETH Zurich Interest

Overview

- Introduction
- Data Analysis Plans
- Hardware Activities
- Conclusions

Hardware Contributions to CMS

Important management roles since the 1990s

Past and Current Data Analysis ETHzürich efforts of the ETH Zurich Group

- Higgs Physics [27*] (cross section, STXS, differential, global fits)
 - $VH(\rightarrow bb)$, $ttH(\rightarrow bb)$
 - Н→уу
 - HH→yybb
- BSM Physics [39*]
 - SUSY (di-lepton, multilepton / EWK, all-hadronic / MT2)
 - HNL
 - **Dark Sectors**
 - $B_S \rightarrow \mu\mu$, R(J/psi)
- SM Physics [17*]
 - W,Z cross sections / Luminosity
 - b-hadron production, angular correlation
 - Substructure Analysis
 - **Event shapes**
- Top Physics [3*]
 - tt cross section
 - ttV production
- Physics Objects [10*]
 - Jet / MET
 - b-tagging
 - Tracking

[*] papers with significant ETH Zurich contribution 2011-2021

Data Analysis Plans

General remarks

- FCCee will provide huge statistics i.e. "high precision", which means that the game will be on the understanding of the systematics:
 - Detector calibration: alignment, material, etc... +luminosity measurements
 - Reconstruction techniques/algorithms
 - Theory predictions
 - "new" being an ee: center of mass energy measurements (machine and experiments)
- Simulations:
 - Detector design: what will it look like?
 - Now work on "Delphes"
 - Will there be a distinction between full and fast sim?
- Computing:
 - What will be the requirements (evt-size x #evts)
 - What is the role of Al?

FCC-ee

FCC-ee

FCC-ee run	$oldsymbol{Z}$ pole	WW threshold	HZ	$tar{t}$ threshold	Above $tar{t}$ threshold
			0.40		
$\sqrt{s} \; [\mathrm{GeV}]$	90	160	240	350	> 350
$\mathcal{L} \ [\mathrm{ab^{-1}/year}]$	88	15	3.5	1.0	1.0
Years of operation	$0.3 \ / \ 2.5$	1	3	0.5	3
Events	$10^{12}/10^{13}$	10^{8}	$2 imes 10^6$	$2.1 imes 10^5$	$7.5 imes 10^4$

plus possible runs at the Z peak (125 GeV) and around the Z pole (extraction of α_{QED} at M_Z)

https://indico.cern.ch/event/517784/contributions/2550640/attachments/1462710/2259814/Mangano-FCC-landscape.pdf

Higgs couplings @ FCC-ee

the value of tt runs goes beyond top physics....

_	Э нхү	240	240+350 (4IP)	240+350 (2IP)			
sub-% precision	ZZ	0.16%	0.15%	0.18%	_		
	ww	0.85%	0.19%	0.23%			
	bb	0.88%	0.42%	0.52%	_		
	cc	1.0%	0.71%	0.87%			
	gg	1.1%	0.80%	0.98%	_		
ns V	TT	0.94%	0.54%	0.66%			
	μμ	6.4%	6.2%	7.6%	_		
	YY	1.7%	1.5%	1.8%			
	Zγ				_		
	tt		~13% from lo	old			
	HH	$\sim 30\%$ from loop effects at ZH production					
	uu,dd	H->ργ, under study					
	SS		_				
	BR _{inv}	< 0.48%	< 0.45%	< 0.55%	(SM: 0.12%)		
	Γ _{tot}		1%		_ 10		

https://indico.cern.ch/event/517784/contributions/2550640/attachments/1462710/2259814/Mangano-FCC-landscape.pdf

Preliminary benchmark studies

- 1. Towards an ultimate measurement of $R_{\ell} = \frac{\sigma(Z \rightarrow hadrons)}{\sigma(Z \rightarrow leptons)}$
- 2. Towards an ultimate measurement of the Z total width Γ_Z
- 3. Towards an ultimate measurement of the Z peak cross section
- 4. Direct determination of $\sin^2 \theta_{\text{eff}}^{\ell}$ and of $\alpha_{\text{QED}}(m_Z^2)$ from muon pair asymmetries
- 5. Determination of the QCD coupling constant $\alpha_S(m_Z^2)$
- 6. Tau Physics, Lepton Universality, and Lepton Flavour Violation
- 7. Tau exclusive branching ratios and polarization observables
- 8. Z-pole Electroweak observables with heavy quarks
- 9. Long lived particle searches
- 10. Measurement of the W mass
- 11. Measurement of the Higgs boson coupling to the c quark
- Measurement of the ZH production cross section
- Measurement of the Higgs boson mass Part I

$$m_{\text{recoil}}^2 = s + m_{\ell\ell}^2 - 2\sqrt{s} (E_{\ell^+} + E_{\ell^-})$$

14. Measurement of the Higgs boson mass - Part II

$$e^+e^- \rightarrow ZH \rightarrow q\bar{q}b\bar{b}$$
.

15. Inferring the total Higgs boson decay width - Part I

$$\sigma_{\rm ZH} \times \mathcal{B}({\rm H} \to {\rm X}\overline{\rm X}) \propto \frac{g_{\rm HZZ}^2 \times g_{\rm HXX}^2}{\Gamma_{\rm H}}$$

- Inferring the total Higgs boson decay width Part II
- 17. Determination of the $HZ\gamma$ effective coupling
- 18. Electron Yukawa via s-channel $e^+e^- \to H$ production at the Higgs pole
- 19. Measurement of top properties at threshold and above
- 20. Search for FCNC in the top sector
- 21. Theory Needs for FCC-ee
- 22. Beyond MFV: constraints on RH charged currents and on dipole operators
- 23. Construction of CP-odd observables to probe CP-violating Higgs couplings
- Combined fit of Higgs and top data

Combined fit of EW and Higgs

Long-Lived Particles

- Long-lived particles (LLPs): new physics particles with lifetimes long enough to decay within the detector volume
 - Lead to distinct experimental signatures
 - Appear in a multitude of BSM scenarios (e.g. SUSY, Hidden Sectors, Exotic H/Z decays, ...) trying to address SM open questions (DM, neutrino masses, baryogenesis etc.)
- Possible interesting physics cases:
 - Hidden Sectors
 - Exotic H/Z decays

Long-lived Particles Hidden Sectors

- New physics hiding in a secluded sector consisting of new particles and forces, very feebly interacting with SM particles
 - Hidden Dark Sectors often introduced to explain DM
- A class of HSs models predict Axion-Like Particles (ALPs) providing a connection between dark and visible sectors via their very-weak coupling to SM particles
 - Light ALPs with small coupling can lead to quite displaced signatures
 - Experiments at FCC-ee can probe a large portion of ALPs parameter space already at the Z pole

ALP coupling to hypercharge field

Long-lived Particles Exotic Z decays

- Exotic Z decays can arise from many dark sector models
 - FCC-ee provides a very clean environment, suitable to probe such decays (including full reconstruction of missing momentum)

arXiv:1712.07237

Hardware Activities

Depleted Monolithic Active Pixel Sensors

Collaboration with PSI

- Chip silicon bulk as sensor material → low mass and high precision (time + spatial)
- Large parameter space of options vs. requirements → careful optimization needed
- We investigate two complementary technologies → radiation hardness vs. time resolution
- Submitted test structures and two large scale prototype structures to two fabs
 → Prototypes received and characterization started

MoTiC chips (S. Burkhalter + PSI/ETH design team)

- 5x5 mm² dimensions
- Flavor A: different preamplifier designs
- Flavor B: sensing diode variations
- Several test structures for charge collection measurements
- Time to Digital Converter circuit

Passive CMOS Pixel Sensors

Collaboration with UZH + University of Bonn

- Produce radiation hard passive planar pixel sensors using an industrial CMOS technology
 - → benefit from CMOS process options: multiple metal layers, 150nm feature size, MIM capacitors, ...
 - → challenge: stitching of structures with high electric field
- Status: currently in qualification for CMS Phase 2 Upgrade. Interesting option for LHC Phase 3 and FCC (very small pixel sizes and AC coupled pixel sensors possible)
- Excellent results from RD53A sensors with 25x100 μm² and 50x50 μm² DC- and AC-coupled sensors:
 - Crosstalk below measurement efficiency of ~3% (~10% in traditional sensor with 25x100 μm²)
 → improved spatial resolution
 - □ DC coupled sensor: >99% efficient after 1 x 10¹⁶n_{eq} NIEL fluence at 400V (work in progress)
 - AC coupled sensor: >99% efficient after 5 x 10¹⁵n_{eq} NIEL fluence at 250V (work in progress)

3D diamond research

Laser

3D electrodes produced by a femtosecond laser

6 50µmx50µm cell ganged together to match readout chip geometry

> 99% efficiency in 3D area < 50% efficiency in 2D area Sensor bias is -55 V

Motivation:

 3D diamond promises the highest radiation hardness

Current status:

 tested both pixel and strip 3D detector prototypes

Future plans:

 radiation hardness tests with the current readout chips

Testing methods:

 CCD, 4-photon edge-TCT, test beam tests at CERN and PSI

Conclusions

- The CMS group of ETH Zurich is committed to the FCC program
 - Large commitments to the LHC and HL-LHC program still binds most of the resources
- Continue our interest in Higgs physics, BSM and SM measurements at FCC-ee and -hh
 - Our current skillsets put us in a good position to contribute both to the data analysis efforts as well as hardware development
- Most concrete next steps:
 - High precision tracking detector R&D
 - Simulation studies
- Collaboration most welcome!