

Current activities in particle physics

- LHCb experiment: major involvement
 - design, construction and commissioning of SciFi tracker for upgrade
 - and of PLUME luminometer
 - physics analyses: exploring precision frontier and rare or forbidden in the SM processes
- SND@LHC experiment: major contribution
 - target tracker construction and commissioning
 - DAQ development and coordination
 - physics case: neutrino measurement and dark matter searchers
- SHiP experiment: contribution to the R&D activities and physics case
- HERD (High Energy cosmic-Radiation Detection) experiment: Ambizione fellow
 - tracker R&D

Detector R&D: SciFi technology

- scintillating fibre technology developed for the LHCb Upgrade in LS2
- provides large area precise tracking with uniform detector
- composed of tightly packed $\varnothing 250~\mu\mathrm{m}$ scintillating fibres
- read out by custom SiPM arrays with $250 \,\mu\mathrm{m}$ channel width
- hit position resolution $70 \,\mu\mathrm{m}$

LHCb Tracker Upgrade Technical Design Report

Detector R&D: next targets

- LS3: LHCb Upgrade Ib consolidation
- LS4: LHCb Upgrade II redesign of many subsystems

Ultimate instantaneous luminosity goal: $1.5 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$

- ×10 Run 3
- or ×100 Run 1

SciFi R&D: new developments for LHCb

Challenges of increased (instantaneous) luminosity:

- ullet higher occupancy in the central region \Longrightarrow there can go for a Si tracker
- radiation damage to the fibres causes lower light yield and decreased hit efficiency

Ongoing R&D targets to mitigate this effect by:

- improving light collection efficiency of SiPMs:
 - dedicated collaboration with industry
- usage of cryo-cooling to decrease SiPM dark current rate
 - goes in the direction of direct DM searches approach
- 1 investigation of new rad. hard scintillating materials with higher light yield:
 - collaboration with the Institute of Chemistry at EPFL

These developments span over the course of \sim 5-10 years:

- ultimate goals are compatible with the FCC environment
- SciFi technology potentially can be considered for the FCC

SciFi R&D: lateral developments

SciFi is used in other applications:

- SND@LHC (low-exposure neutrino-detection experiment)
- beam-gas monitoring system
- medical applications (external collaboration)

Allow for R&D in other directions:

- timing information from SciFi (as of now ~250 ps resolution)
- calorimetry application: EM and hadron shower identification and energy measurement
- "real-life" test ground for new scintillating materials

SND@LHC target tracker assembled

Physics analyses

Test standard model boundaries at LHCb through:

- precision measurements:
 - measurements in charm sector
- rare processes studies:
 - investigating radiative b decays
 - lepton flavor universality tests
- searches of BSM effects:
 - lepton flavor violating processes
 - long-lived particles searches

Upcoming SND@LHC will allow to:

- measure high-energy neutrinos and explore related quantities (SND@LHC TP)
- search for feebly interacting particles (arXiv:2104.09688)

FCC studies

- no dedicated FCC physics or detector studies (yet)
- but LPHE members pursue avenues they are interested in
- e.g. studies of the $B_c^+ \to \tau^+ \nu_{\tau}$ at FCC-ee by Donal Hill *et al* (arXiv:2105.13330):
 - ullet a powerful probe of the $b o c\ell
 u$ structure exhibiting now tensions with the SM

Current $R_{D^{(*)}}$ measurements (magenta) wrt FCC-ee $B_c^+ \to \tau^+ \nu_\tau$ projection for LQ model

Summary

- currently, strong commitment to the LHCb exploitation and future upgrades (in LS3 and LS4)
- active R&D and construction goes up to 2030, with the data-taking till the end of HL-LHC

- physics interests are diverse and can be greatly shaped by near-term results in flavor sector
- FCC activities will have to be established in the midterm future