Monolithic silicon pixel detectors for timing

Giuseppe lacobucci Université de Genève

Silicon detectors at UNIGE

- Long tradition at UNIGE with hybrid silicon detectors:
 - strip detectors (ATLAS-SCT, AMS, DAMPE)
 - pixel detectors (ATLAS-IBL)
- Since 2013, we started a research on novel pixel sensors
 - first on CCPD and then on monolithic pixel sensors for ATLAS HL-LHC upgrade
- More recently we launched an R&D on monolithic pixel sensors in SiGe BiCMOS technology for timing purposes, for experiments and applications.

AIM: develop monolithic sensor with time resolution below 100ps

Time resolution of silicon pixel sensors: our rationale

Main parameters that control the time resolution of semiconductor detectors:

- 1. Geometry & fields
- 2. Charge collection (Landau) noise
- 3. Electronics noise

1. Geometry and fields

Sensor optimization for time measurement means that: the sensor time response must be independent of the particle trajectory

Wide pixel w.r.t. depletion depth: "parallel plate" read out

Desired features:

- Uniform electric field (charge transport)
- Uniform Ramo field (signal induction)
- Saturated charge drift velocity

2. Charge-collection (Landau) noise

The charge-collection noise is produced by Landau fluctuations of charge deposition in the sensor:

$$I_{ind} \cong v_{drift} \frac{1}{D} \left[\sum_{i} q_{i} \right]$$

Large charge clusters produce large fluctuations of the induced current.

The **statistical origin** of this variability of I_{ind} makes this effect irreducible in PN-junction sensors.

To minimise this effect, we developed and patented a **novel multi PN-junction sensor**: the **picoAD** (Picosecond Avalanche Detector).

3. Electronic noise

Once the geometry has been fixed, the time resolution depends mostly on the amplifier performance.

$$\sigma_{t} = \frac{\sigma_{V}}{\frac{dV}{dt}} = \frac{A_{Gain} \cdot ENC}{A_{Gain} \cdot I_{ind}} \cong \frac{t_{rise}}{\frac{Q}{ENC}} = \frac{t_{rise}}{\frac{Signal}{Noise}}$$

Need an ultra-fast, low noise (and low power) electronics with fast rise time and small capacitance.

Our solution:

SiGe HBT technology \implies high f_T , single transistor preamplifier

~1 ns rise time, < 90 e- ENC on ~70 fF capacitance

SiGe HBT transistors for low-noise, fast amplifiers

In SiGe Heterojunction Bipolar Transistors (HBT) the grading of the bandgap in the Base changes the charge-transport mechanism in the Base from diffusion to drift:

Heterojunction:

High doping density in the Base

 \implies thinner Base \implies reduction of base resistance R_b

Grading of germanium in the base:

field-assisted charge transport in the Base, equivalent to introducing an electric field in the Base

 \implies short e⁻ transit time in Base \implies very high β

High f_T and high β SiGe HBT allows for amplifiers with:

- **→** Low series noise
- **→** Fast pulse integration
- **→** High gain
- **→** Very low-power consumption

SiGe HBT vs. CMOS

Peak transition frequency vs. technology node

A. Mai and M. Kaynak, SiGe-BiCMOS based technology platforms for mm-wave and radar applications. DOI: 10.1109/MIKON.2016.7492062

Intrinsic amplifier jitter: common emitter (source) configuration in a 130nm technology

L. Paolozzi et al., Time resolution and power consumption of a monolithic silicon pixel prototype in SiGe BiCMOS technology, JINST 15 (2020) P11025, https://doi.org/10.1088/1748-0221/15/11/P11025

Radiation hardness of standard commercial HBTs

S. Díez et al, IEEE Nuclear Science Symposium & Medical Imaging Conference, Knoxville, TN, 2010, pp. 587-593, doi: 10.1109/NSSMIC.2010.5873828.

From: J.D. Cressler, IEEE transactions on nuclear science, vol. 60, n. 3 (2013)

SiGe BJT is inherently radiation hard up to 10¹⁴ n_{eq}/cm², well above the FCCee yearly integrated doses.

SiGe BiCMOS markets served

Optical fiber networks

Smartphones

IoT Devices

Microwave Communication

Automotive: LiDAR, Radar and Ethernet

HDD preamplifiers, line drivers, Ultra-high speed DAC/ADCS

source: https://towerjazz.com/technology/rf-and-hpa/sige-bicmos-platform/

Several large-volume foundries offer SiGe processes: TJ, TSMC, ST, AMS, GF, ...

as well as research institutes: like IHP

Fast growing technology: f_{max} = 0.7 THz transistor recently developed (H2020 DOT7 project by IHP)

Technology choice: IHP 130nm SiGe process

Exploit the properties of state-of-the-art SiGe Bi-CMOS transistors:

Leading-edge technology: IHP SG13G2

130 nm process featuring SiGe HBT with

- Transistor transition frequency: $f_T = 0.3$ THz
- Current gain: $\beta = 900$
- Delay gate: 1.8 ps

In this IHP process we produced:

- 1) an ultra-fast, low-noise **amplifier** with low-power consumption (60 μ W/ch to obtain $\sigma_t \sim 50$ ps, and 4 μ W/ch for $\sigma_t \sim 200$ ps)
- 2) a TDC that, with a simple architecture, provides a time resolution of 1.6 ps at a power consumption of ~4 mW/ch

R&D at UNIGE

Articles:

Small-area pixels power consumption: JINST 15 (2020) P11025, https://doi.org/10.1088/1748-0221/15/11/P11025 Hexagonal small-area pixels: JINST 14 (2019) P11008, https://doi.org/10.1088/1748-0221/14/11/P11008
TT-PET demonstrator chip testbeam: JINST 14 (2019) P02009, https://doi.org/10.1088/1748-0221/14/07/P02009
TT-PET demonstrator chip design: JINST 14 (2019) P07013, https://doi.org/10.1088/1748-0221/13/04/P04015
Proof-of-concept amplifier: JINST 11 (2016) P03011, https://doi.org/10.1088/1748-0221/11/03/P03011

Patents:

PLL-less TDC & synchronization System: EU Patent EP18181123.3 Picosecond Avalanche Detector (PicoAD): EU Patent EP18207008.6

Silicon Team at UNIGE

Giuseppe Iacobucci

- project P.I.
- System design

Didier Ferrere

- System integration
- Laboratory test

Pierpaolo Valerio

- Lead chip design
- Digital electronics

Mateus Vicente

- System integration
- Laboratory test

Yana Gurimskaya

- Radiation tolerance
- Laboratory test

Yannick Favre

- Board design
- RO system

Théo Moretti

Laboratory test

Antonio Picardi

Chip design

Lorenzo Paolozzi

- Sensor design
- Analog electronics

Sergio Gonzalez-Sevilla

- System integration
- Laboratory test

Magdalena Munker

- Sensor design
- Laboratory test

Roberto Cardella

- Sensor design
- Laboratory test

Fulvio Martinelli

Chip design

Stéphane Débieux

- Board design
- RO system

Chiara Magliocca

Laboratory test

Matteo Milanesio

Laboratory test

Main research partners:

Roberto Cardarelli INFN Rome Tor Vergata

Marzio Nessi CERN & UNIGE

Ivan Peric KIT

Holger Rücker
IHP Mikroelektronik

Mehmet Kaynak IHP Mikroelektronik

Bernd Heinemann IHP Mikroelektronik

Funded by:

Prototypes produced in SiGe BiCMOS technology by UNIGE

2016

2017

2018

2019

2021

Monolithic prototype ASICs for timing purposes

200ps

- 1 and 0.5 mm² pixels
- Discriminator output

110ps

- 30 pixels 500x500µm²
- 100ps TDC +I/O logic

50ps

- Hexagonal pixels 65µm and 130µm side
- Discriminator output

≤ 40 ps

- Hexagonal pixels 65µm side
- 30ps TDC +I/O logic
- Analog channels

PicoAD prototype

- epitaxial layers + gain layer
- expected: ~10ps

Other ASICs produced:

FASER pre-shower prototype

Time resolution 100ps — low power $(40\mu\text{W/ch})$ Very large pixel dynamic range: 0.2-50 fC

Electronics-only

10 by 10 pixel matrix (100 μ m pitch) to be hybridised with different sensors

Highly unable frontend 50ps TDC channels + experimental 1ps channel

Picosecond TDC

Proof of concept.

Novel Time-to-Amplitude design for ps accuracy

Compact, low-power, high dynamic range

The 2018 prototype

- Matrices with pixels of two sizes.
 The smaller-area pixels have:
 - ► Hexagon sides: 65µm (pitch ~100µm)
 - ► Total capacitance: 70 fF
 - ► Equivalent Noise Charge: 90 e
- Discriminator output
- New dedicated custom components developed with the IHP foundry

- Negative HV applied to substrate from backside and from top
- All pixels and electronics nwells at positive low voltage
- Bias voltage of -140V provides a depletion layer of 26 μm
 - ▶ with typical signal charge for a MIP: ~1600 electrons

Note that this sensor was thinned to 60 µm, including the electronics

The 2018 prototype

Data taken with 90Sr source
TOF between our sensor and an LGAD

Excellent results: 50 ps time resolution at high power consumption

The 150 ps achieved at ~20 times smaller power consumption allows a series of new applications. See below.

Note that: for this chip the performance was limited by time-walk correction (done with TOT)

The "ATTRACT" prototype

2019 MPW submission funded by H2020 ATTRACT MonPicoAD project

Five different matrices of pixels:

- 1. Active pixel
 - → Front end in pixel
 - → HBT preamp + driver (in pixel) + CMOS discriminator (outside pixel)
- 2. PET-project version:
 - → HBT preamp + CMOS discriminator
- 3. Limiting amplifier:
 - → HBT preamp + HBT limiting amplifier
- 4. Double threshold:
 - → HBT preamp + two CMOS discriminators
- 5. Analog channels:
 - \rightarrow HBT preamp + two HBT Emitter Followers to 500 Ω resistance on pad

The "ATTRACT" prototype

CERN SPS testbeam in July 2021 TOF resolution between two sensors Very simple data analysis

TOF Distribution

Improved time-walk correction (done now with signal amplitude):

The "ATTRACT" prototype

Efficiencies measured at the SPS testbeam:

With these prototypes the first phase comes to an end:

R&D on monolithic SiGe BiCMOS very successful,

with results that exceed the initial goal of resolutions below 100ps

Second phase opening, with three funded projects:

- 1. The FASER high-resolution W-Si preshower
- 2. 100µPET: ultra-high resolution molecular imaging
- 3. MONOLITH: monolithic PicoAD detector

Present FASER detector very well instrumented to detect **charged-particles** pairs, but NOT YET for **photon pairs**

UNIGE groups of Anna Sfyrla & Giuseppe Iacobucci + FASER groups of MAINZ, CERN, JAPAN, TSINGHUA

Several layouts studied. Chosen baseline:

6 planes of 1X₀ tungsten + monolithic silicon sensors with 100µm pitch

Axion-like particle sensitivity reach:

Grid of ~1500 (ma,gwwa) points from the ALP model, convoluted with the GEANT4 efficiency matrix across photon energies and separations:

UNIGE simulation&reconstruction team:

- Small-size FASER prototype ASIC.
 - Tests completed with good results:
 - ► FE electronics integrated in pixel works as expected
 - No cross talk observed

- FASER full-reticle preproduction chip submitted: (first large-area (2.0 x 1.5 cm²) chip by our group)
 - ► In IHP 130nm SiGe BiCMOS process
 - ► Chip divided in «supercolumns» (16x128 pixels) with a ~40µm inactive slice of digital logic in between
 - ► Three matrices (FASER V1/V2/V3) with different flavours
- Huge dynamic range: 1fC to 64 fC
- These chips will be used to build prototype modules

2. The 100µPET project:

pioneering ultra-high resolution molecular imaging

2. The 100µPET project

- SNSF SINERGIA project 2021-2025 (partners: HUG and EPFL)
 - ► Idea: multi-layer of silicon pixel sensors to detect photons converted in 50µm of lead
 - ▶ Pitch 100µm ⇒ ~200µm point-spread functions
 - ► 200ps resolution ⇒ reduce accidental coincidences

"Supermodule" (5 detection layers, in blue) on a electronics support board (in green) where the chips are wire-bonded for power and I/O

A similar system being explored by ALICE colleagues to prototype a "silicon chamber"

2. The 100µPET project

"Tower" of 12x5 = 60 detection layers

16 Towers all around to form the scanner

2. The 100µPET project

Monolithic technology at last allows to realise the old idea to use silicon for PET:

Figure 7: Expected coincidence rate and NECR vs. source activity. A cylindrical phantom as prescribed by [58] was used. For comparison, the insert shows the results obtained by the Hyperion IID [59] scanner.

3. The MONDLITH

ERC project

AIM of the project:

monolithic implementation of our low-noise ultra-fast SiGe BiCMOS electronics with the Picosecond Avalanche Detector (PicoAD, EU Patent EP18207008.6), a multi-junction pixelated avalanche detector for ps time resolutions:

PicoAD devised to minimise Landau noise:

only electrons produced in the absorption region are multiplied $\;\Rightarrow\;$ excellent timing

Multi-junction pixelated avalanche detector for ps time resolutions:

EU Patent EP18207008.6

Unique timing performance:
GEANT4+CADENCE simulations show
2 ps time resolution
contribution from the sensor

First PicoAD prototype:

- Integrated in a special wafer for the ATTRACT prototype.
- Process design in collaboration with IHP
- Lab tests:
 - Stable operation, but small plateau due to non-optimal wafers processing
 - ► Test at low temperatures with ⁵⁵Fe sources: two amplitude peaks measured

First PicoAD prototype:

► Measurement with ⁵⁵Fe source in UNIGE cleanrooms:

Next steps:

- 1) Testbeam at CERN (Sept.-Oct.) to measure efficiency and time resolution
- 2) Second prototype (Q1 2022) on a wafer with better engineered epitaxial layers

Summary

- SiGe BiCMOS technology can be used to produce ultra-fast, low-noise, low-power amplifiers.
- We implemented these amplifiers in monolithic sensors with 100µm "pitch" that are able to provide:
 - ► Time resolutions < 40ps
 - Efficiencies > 99% even in the inter pixel regions

- By 2025 the MONOLITH ERC project will implement a 100% fill-factor gain layer
 (PicoAD patented sensor) to achieve few picoseconds resolutions in monolithic pixels
 - Results from first prototypes are very encouraging: the PicoAD works and shows gain as expected

Conclusions

- 1. The exquisite time resolution provided by SiGe BiCMOS enables construction of very precise 4D trackers and particle-ID.
- 2. Our sensors were thinned to 60µm (including electronics)
 - ⇒ trackers can be built with very little material.
- 3. The monolithic technology is affordable and will allow control of the costs of very large-area detectors. Several large-volume foundries offer SiGe BiCMOS.
- 4. SiGe BiCMOS is inherently radiation tolerant, at least until 10¹⁴neq/cm². The MONOLITH project will explore radiation tolerance beyond that limit.

All the tiles seem to be in place to consider monolithic sensors with timing as a key tool for FCCee trackers

Silicon Team at UNIGE

Giuseppe Iacobucci

- project P.I.
- System design

Didier Ferrere

- System integration
- Laboratory test

Pierpaolo Valerio

- Lead chip design
- Digital electronics

Mateus Vicente

- System integration
- Laboratory test

Yana Gurimskaya

- Radiation tolerance
- Laboratory test

Yannick Favre

- Board design
- RO system

Théo Moretti

Laboratory test

Antonio Picardi

Chip design

Lorenzo Paolozzi

- Sensor design
- Analog electronics

Sergio Gonzalez-Sevilla

- System integration
- Laboratory test

Magdalena Munker

- Sensor design
- Laboratory test

Roberto Cardella

- Sensor design
- Laboratory test

Fulvio Martinelli

Chip design

Stéphane Débieux

- Board design
- RO system

Chiara Magliocca

Laboratory test

Matteo Milanesio

Laboratory test

Main research partners:

Roberto Cardarelli INFN Rome Tor Vergata

Marzio Nessi CERN & UNIGE

Ivan Peric KIT

Holger Rücker
IHP Mikroelektronik

Mehmet Kaynak IHP Mikroelektronik

Bernd Heinemann IHP Mikroelektronik

Funded by:

Extra Material

FASER preshower: module and plane layout and power

Superpixel = 16x16 = 256 pixels Column = 8 superpixels = 2'048 pixels Chip = 13 columns = 26'624 pixels Module = 2x3 = 6 chips = 159'744 pixels Plane = 2x6 = 12 modules = 1'916'928 pixels Pre-shower = 6 planes = 11'501'568 pixels

- 2x6=12 modules/plane
- Power/plane = 48W
- Total pre-shower power = 288 W

Plane: 6x2 modules

Module Power

Power	Voltage [V]	Current [A]	Regulator On PP	Power [W] including 20% from regulator
Analog	1.2	1.2	Yes	1.7
Digital	1.2	0.9	Yes	1.3
Driver	0.9	0.9	yes	1

Max total module power: 4 W

Small-size FASER preshower prototype

Prototype contains basic building blocks of final chip. Studies ongoing on:

- Pixel noise level
- Front-end implementation
- Cross-talk for target pixel area
- Performance (power consumption etc.)

Engineering run with **full-column prototype chips** submitted **on June 29th**

UNIGE design in collaboration with KIT

digital routing of super-pixels

1/17 = 6% dead area

- Monolithic ASIC in 130nm
 SiGe BiCMOS process by IHP
- Reticle size: 1.5×2.5cm²
- Pixel size: hexagonal pixels, 65µm side
- Local analog memories to store the charge
- Ultra-fast readout with no digital memory on-chip to minimise the dead area
- In between an imaging chip and an HEP-detector chip

Several layouts studied prior to the funding request. Chosen baseline:

6 planes of 1X₀ tungsten + monolithic silicon sensors pitch 100µm pitch

The new pre-shower will fit in the present volume between the tracker and the calorimeter. Space available (28 cm (detector length: 24.6 cm)

- Tests of the small-size FASER prototype ASIC completed with good results:
 - ► FE electronics integrated in pixel works as expected (and implemented in the large-size prototype)
 - No cross talk observed
- Full-reticle preproduction chip submitted in June
 - ► In IHP 130nm SiGe BiCMOS process
 - ► Total area: 2.0 x 1.5 cm²
 - ► Chip divided in «supercolumns» (16x128 pixels) with a ~40µm slice of digital logic in between
 - ► Three matrices with different flavours:
 - → FASER V1: 4 supercolumns, baseline design with FADC for TOT
 - → FASER V2: 3 supercolumns with FADC and BJT discriminators to reduce pixel-to-pixel mismatch
 - → FASER V3: 3 supercolumns with digital-logic counters for the TOT (more conventional but triple dead area)
- Huge dynamics range: 1fC to 64 fC
- These chips will be used to build prototype modules.

Small-size FASER preshower prototype

Full-reticle FASER preproduction chip

