Experimental challenges at future colliders

CHIPP Strategy Update Workshop ECR Discussion

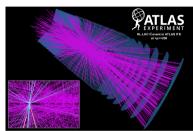
Armin Ilg¹

¹University of Zürich

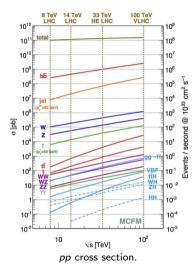
04.02.2025

University of Zurich^{UZH}

Different challenges at different colliders

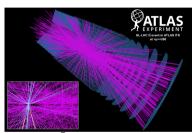

Factors:

- Type of particles being collided (e^+e^- , e^-p , e^-h , pp, hh, $\mu^+\mu^-$, $\gamma\gamma$, ...)
- Centre-of-mass energy
- Luminosity
- Asymmetry (HALHF or Belle II)
- Hermetic or forward only

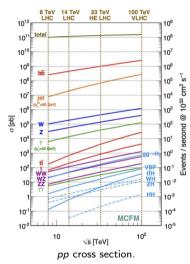

Will focus on FCC-ee experimental challenges, but also show differences at linear colliders, muon colliders, and FCC-hh

Hadron collisions

Simulated tt event in ATLAS ITk with pile-up of 200 (ATLAS Experiment © 2022 CERN).

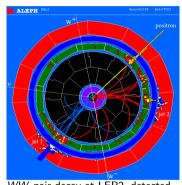


 Actually a gluon and quark collider

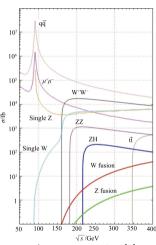

- Initial state unknown
- High cross sections for colored states
- Huge total cross section
 - Pile-up
 - Triggering, readout, radiation damage...
- $\mathcal{O}(10^8)$ Higgses @ HL-LHC. $\mathcal{O}(10^{10})$ Higgses @ FCC-hh
- Directly produce heavy BSM particles

Hadron collisions

Simulated $t\bar{t}$ event in ATLAS ITk with pile-up of 200 (ATLAS Experiment © 2022 CERN).

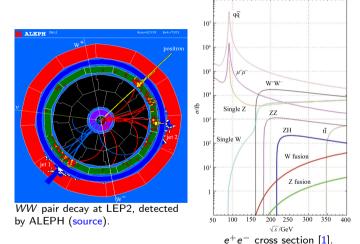

 Actually a gluon and quark collider

- → Initial state unknown
- → High cross sections for colored states
- Huge total cross section
 - Pile-up
 - Triggering, readout, radiation damage...
- $\mathcal{O}(10^8)$ Higgses @ HL-LHC, $\mathcal{O}(10^{10})$ Higgses @ FCC-hh
- Directly produce heavy BSM particles


ightarrow Looking for the needle in the haystack

Lepton collisions

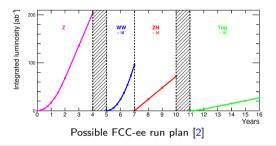
WW pair decay at LEP2, detected by ALEPH (source).



 e^+e^- cross section [1].

- Collision of point-like particles
 → Initial E and p known
- No multijet (or QCD) background
 - No total line six orders of magnitues above the EW gauge bosons!
 - All collisions are interesting!
 - $\mathcal{O}(10^6)$ Higgses at e^+ - e^- Higgs factories
 - Almost no pile-up
 - Lower radiation environment
- Especially sensitive to EW states
- Directly produce ligher BSM, indirect sensitivity through precision

Lepton collisions

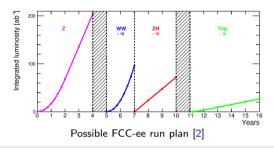


→ Measure a needlestack: How many needles and how pointed are they?

- Collision of **point-like** particles
 → Initial E and p known
- No multijet (or QCD) background
 - No total line six orders of magnitues above the EW gauge bosons!
 - All collisions are interesting!
 - $\mathcal{O}(10^6)$ Higgses at e^+ - e^- Higgs factories
 - Almost no pile-up
 - Lower radiation environment
- Especially sensitive to EW states
- Directly produce ligher BSM, indirect sensitivity through precision

The Future Circular Collider (FCC) integrated programme

EW: $2.4 \cdot 10^8$ WW. $6 \cdot 10^{12}$ Z


Flavour: $O(10^{12}) \ b\bar{b}, \ c\bar{c}, \ \text{etc.}, \ O(10^{11}) \ \tau\bar{\tau}$

H: $1.78 \cdot 10^6$ HZ. 125k WW \rightarrow H

Top: $1.9 \cdot 10^6 \ t\bar{t}$

The Future Circular Collider (FCC) integrated programme

EW: $2.4 \cdot 10^8$ WW, $6 \cdot 10^{12}$ Z

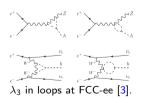
Flavour: $O(10^{12}) \ b\bar{b}, \ c\bar{c}, \ \text{etc.}, \ O(10^{11}) \ \tau\bar{\tau}$

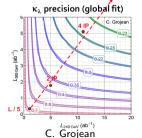
 $extbf{H}: 1.78 \cdot 10^6 \text{ HZ}, 125 \text{k WW}
ightarrow ext{H}$

Top: $1.9 \cdot 10^6 \ t\bar{t}$

So what can be done with this many rather clean collisions?

Physics at the FCC-ee A few highlights


Higgs physics



Shape of the **Higgs potential**:

$$V(h) = \frac{m_H^2 h^2}{2} + \lambda_3 \nu h^3 + \lambda_4 \nu h^4$$

FCC-ee: Indirect measurement

- Probe a non-zero value for the Higgs self-coupling (λ_3) at better than 95% CL
- Accurate $t\bar{t}Z$ and Higgs couplings
 - \rightarrow FCC-hh: measurement down to few % level in $gg \rightarrow HH$

Yukawa couplings to third-generation quarks and τ and to W and Z established. Now looking at second generation (except μ , to be done at HL-LHC)

FCCAnalyses: FCC-ee Simulation (Delphes)

Z(→vv) H(→qq)	bb	сс	ss	gg
δμ/μ (%)	0.4	2.9	160	1.2

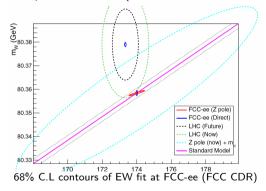
Discovery of c Yukawa coupling guaranteed, s not too far away

G. Marchiori, FCC Physics Workshop 2023.

EW and top physics

LEP1: $18 \cdot 10^6 Z$ bosons

EW and top physics



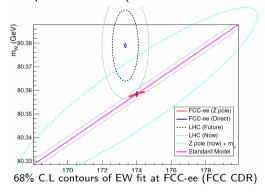
LEP1: $18 \cdot 10^6 Z$ bosons

FCC-ee: $6 \cdot 10^{12}~Z$ bosons \rightarrow LEP1 programme in couple of minutes (LEP2 W stats in 90 min)

Observable	Present value \pm error	FCC-ee Stat.	FCC-ee Syst.	Comment and dominant exp. error
m _Z (keV)	$91,186,700 \pm 2200$	5	100	From Z line shape scan Beam energy calibration
Γ _Z (keV)	$2,495,200 \pm 2300$	8	100	From Z line shape scan Beam energy calibration
$R_{\ell}^{Z} (\times 10^{3})$	$20,767 \pm 25$	0.06	0.2 - 1.0	Ratio of hadrons to leptons acceptance for leptons
$\alpha_{\rm s} \ ({\rm m_Z}) \ (\times 10^4)$	1196 ± 30	0.1	0.4-1.6	From R_{ℓ}^{Z} above [43]
R _b (×10 ⁶)	$216,290 \pm 660$	0.3	< 60	Ratio of bb to hadrons stat. extrapol. from SLD [44]
$\sigma_{\rm bad}^{0} \ (\times 10^{3}) \ (\rm nb)$	$41,541 \pm 37$	0.1	4	Peak hadronic cross-section luminosity measurement
$N_{\nu} (\times 10^3)$	2991 ± 7	0.005	1	Z peak cross sections Luminosity measurement
$\sin^2 \theta_W^{eff} (\times 10^6)$	$231,480 \pm 160$	3	2-5	From $A_{FB}^{\mu\mu}$ at Z peak Beam energy calibration
$1/\alpha_{QED} \ (m_Z) \ (\times 10^3)$	$128,952 \pm 14$	4	Small	From $A_{FB}^{\mu\mu}$ off peak [34]
A _{FB} ^{b,0} (×10 ⁴)	992 ± 16	0.02	1-3	b-quark asymmetry at Z pole from jet charge
A _{FB} ^{pol, r} (×10 ⁴)	1498 ± 49	0.15	< 2	τ Polarisation and charge asymmetry τ decay physics
mw (MeV)	$80,350 \pm 15$	0.5	0.3	From WW threshold scan Beam energy calibration
Γ _W (MeV)	2085 ± 42	1.2	0.3	From WW threshold scan Beam energy calibration
$\alpha_8 \; (m_W) \; (\times 10^4)$	1170 ± 420	3	Small	From R_{ℓ}^{W} [45]
$N_{\nu} (\times 10^3)$	2920 ± 50	0.8	Small	Ratio of invis. to leptonic in radiative Z returns
mtop (MeV)	$172,740 \pm 500$	17	Small	From tt threshold scan QCD errors dominate
Γ _{top} (MeV)	1410 ± 190	45	Small	From tt threshold scan QCD errors dominate
$\lambda_{top}/\lambda_{top}^{SM}$	1.2 ± 0.3	0.1	Small	From tt threshold scan QCD errors dominate
ttZ couplings	±30%	0.5-1.5%	Small	From $E_{CM} = 365 \text{ GeV run}$

Precision measurements at FCC-ee (FCC CDR)

EW and top physics

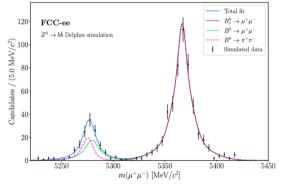


LEP1: $18 \cdot 10^6 Z$ bosons

FCC-ee: $6 \cdot 10^{12}~Z$ bosons \rightarrow LEP1 programme in couple of minutes (LEP2 W stats in 90 min)

Observable	Present value ± error	FCC-ee Stat.	FCC-ee Syst.	Comment and dominant exp. error
m _Z (keV)	$91,186,700 \pm 2200$	5	100	From Z line shape scan Beam energy calibration
Γ _Z (keV)	$2,495,200 \pm 2300$	8	100	From Z line shape scan Beam energy calibration
R_{ℓ}^{Z} (×10 ³)	$20,767 \pm 25$	0.06	0.2-1.0	Ratio of hadrons to leptons acceptance for leptons
$\alpha_{\rm s} \ ({\rm m_{\rm Z}}) \ (\times 10^4)$	1196 ± 30	0.1	0.4-1.6	From R_{ℓ}^{Z} above [43]
R _b (×10 ⁶)	$216,290 \pm 660$	0.3	< 60	Ratio of bb to hadrons stat. extrapol. from SLD [44]
$\sigma_{\text{bad}}^{0} \ (\times 10^{3}) \ (\text{nb})$	$41,541 \pm 37$	0.1	4	Peak hadronic cross-section luminosity measurement
$N_{\nu} (\times 10^3)$	2991 ± 7	0.005	1	Z peak cross sections Luminosity measurement
$\sin^2 \theta_W^{\text{eff}} \ (\times 10^6)$	$231,480 \pm 160$	3	2-5	From $A_{FB}^{\mu\mu}$ at Z peak Beam energy calibration
$1/\alpha_{QED} \ (m_Z) \ (\times 10^3)$	$128,952 \pm 14$	4	Small	From A _{FB} off peak [34]
$A_{FB}^{b,0}$ (×10 ⁴)	992 ± 16	0.02	1-3	b-quark asymmetry at Z pole from jet charge
$A_{FB}^{pol,\tau}$ (×10 ⁴)	1498 ± 49	0.15	< 2	τ Polarisation and charge asymmetry τ decay physics
mw (MeV)	$80,350 \pm 15$	0.5	0.3	From WW threshold scan Beam energy calibration
Γ _W (MeV)	2085 ± 42	1.2	0.3	From WW threshold scan Beam energy calibration
$\alpha_s \; (m_W) \; (\times 10^4)$	1170 ± 420	3	Small	From R_{ℓ}^{W} [45]
$N_{\nu} (\times 10^3)$	2920 ± 50	0.8	Small	Ratio of invis. to leptonic in radiative Z returns
m _{top} (MeV)	$172,740 \pm 500$	17	Small	From tt threshold scan QCD errors dominate
Γ _{top} (MeV)	1410 ± 190	45	Small	From tt threshold scan QCD errors dominate
$\lambda_{top}/\lambda_{top}^{SM}$	1.2 ± 0.3	0.1	Small	From tt threshold scan QCD errors dominate
ttZ couplings	± 30%	0.5-1.5%	Small	From $E_{CM} = 365 \text{ GeV run}$

Precision measurements at FCC-ee (FCC CDR)

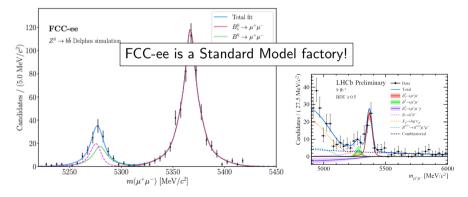


FCC-ee is a Higgs, EW and top factory!

Physics at the FCC-ee: Flavour physics

Particle production (10 ⁹)	$B^0 \ / \ \overline{B}^0$	B^+ / B^-	$B_s^0 \ / \ \overline{B}_s^0$	$\Lambda_b \ / \ \overline{\Lambda}_b$	$c\overline{c}$	τ^-/τ^+
Belle II	27.5	27.5	n/a	n/a	65	45
FCC-ee	300	300	80	80	600	150

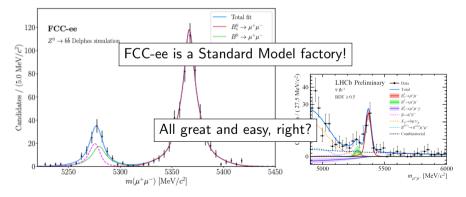
Experimental challenges at future colliders



S. Monteil, FCC Flavours Workshop 2022

Physics at the FCC-ee: Flavour physics

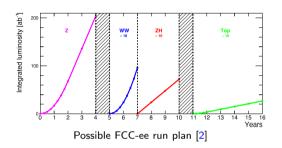
Particle production (10 ⁹)	B^0 / \overline{B}^0	B^+ / B^-	$B_s^0 \ / \ \overline{B}_s^0$	$\Lambda_b \ / \ \overline{\Lambda}_b$	$c\overline{c}$	τ^-/τ^+
Belle II	27.5	27.5	n/a	n/a	65	45
FCC-ee	300	300	80	80	600	150



S. Monteil, FCC Flavours Workshop 2022

Physics at the FCC-ee: Flavour physics

Particle production (10 ⁹)	B^0 / \overline{B}^0	B^+ / B^-	$B_s^0 \ / \ \overline{B}_s^0$	$\Lambda_b \ / \ \overline{\Lambda}_b$	$c\overline{c}$	τ^-/τ^+
Belle II	27.5	27.5	n/a	n/a	65	45
FCC-ee	300	300	80	80	600	150



S. Monteil, FCC Flavours Workshop 2022

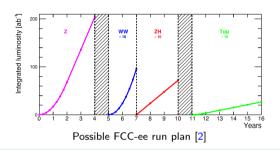
Experimental challenges at future colliders

The Future Circular Collider (FCC) integrated programme

EW: $2.4 \cdot 10^8$ WW, $6 \cdot 10^{12}$ Z \leftarrow **challenging! Flavour**: $O(10^{12})$ $b\bar{b}$, $c\bar{c}$, etc., $O(10^{11})$ $\tau\bar{\tau}$

 $extbf{H}$: 1.78 \cdot 10⁶ HZ, 125k WW \rightarrow H

Top: $1.9 \cdot 10^6 \ t\bar{t}$


So what can be done with this many rather clean collisions?

Experimental challenges

- Need to match tiny statistical uncertainties with theoretical and experimental systematic uncertainties of $\mathcal{O}(10^{-4}-10^{-5})!$
- Event rate of \sim 100 kHz @ Z-pole \rightarrow almost no pile-up, but want to read out every every single of these collisions with a very well defined efficiency!

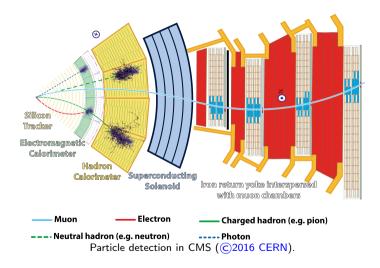
The Future Circular Collider (FCC) integrated programme

EW: $2.4 \cdot 10^8$ WW. $6 \cdot 10^{12}$ Z \leftarrow challenging! **Flavour**: $O(10^{12}) \ b\bar{b}, \ c\bar{c}, \ \text{etc.}, \ O(10^{11}) \ \tau\bar{\tau}$

H: $1.78 \cdot 10^6$ HZ. 125k WW \rightarrow H

Top: $1.9 \cdot 10^6 \ t\bar{t}$

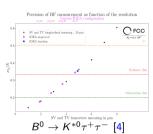
So what can be done with this many rather clean collisions?

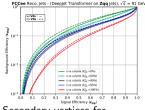

Experimental challenges

- Need to match tiny statistical uncertainties with theoretical and experimental systematic uncertainties of $\mathcal{O}(10^{-4}-10^{-5})!$
- Event rate of $\sim 100\,\mathrm{kHz}$ @ Z-pole \rightarrow almost no pile-up, but want to read out every every single of these collisions with a very well defined efficiency!

How are these challenges overcome experimentally?

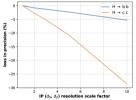
Particle detection at colliders


 e^+e^- experiments similar structure. Main difference: First acc. magnets inside experiments!


Vertex detector

For anything that has secondary vertices!

- b and c hadrons, taus, V0s, ...
- Reconstruct complex decay chains
- Particle lifetime measurements
- Efficient flavour tagging (b/c/g/s)


Secondary vertices for s-tagging [5]

Stringent requirements on vertex detector to limit syst. uncertainties:

- Coverage down to $|\cos(\theta)| \leq 0.99$ and high reco. efficiency
- $\sigma_{d_0} = a \oplus \frac{b}{p \sin^{3/2} \theta}$ with $a \approx 3 \, \mu$ m, $b \approx 15 \, \mu$ mGeV

 a given by sensor resolution \rightarrow Small single-hit resolution, pixels

 - b given by multiple scattering \rightarrow Minimise material budget (number of radiation lengths X_0) in vertex and beam pipe

Impact of IP resolution on Yukawa coupling measurement (L. Gouskous)

Tracking

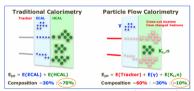
Reconstruction of the charged particle trajectories

- Large radius due to lower momenta and B field limited to 2 (or 3?) T
- ullet Precise angle determination in di-muons, $< 100\,\mu\mathrm{rad}$
- Need for exquisite momentum resolution of $\sigma(1/p_{\rm T}) \approx a \oplus b/p_{\rm T}$, with $a \approx 3 \times 10^{-5} \, {\rm GeV}^{-1}$, $b \approx 0.6 \cdot 10^{-3}$
 - Again minimise the material budget
- Either some precise hits (silicon tracking) or many less precise hits (gaseous tracking)
 - Gaseous tracking benefitial to long-lived particle searches
- Precise tracks are important ingredient to particle flow reconstruction

Visualisation of tracking [6].

Calorimetry

EM calorimeter


- Supreme energy resolution for
 - $B_s \to D_s K$: Pions may require $5\%/\sqrt{E}$
 - Resolution on Higgs mass in $e^+e^- \to Z(\to e^+e^-)H$ almost as good as in $\mu^+\mu^-$ with $3\%/\sqrt{E}$ (M.T. Lucchino et al. [7])
 - $Z\nu_e\bar{\nu}_e$ coupling

Particle-flow reconstruction

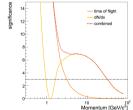
- Optimise jet energy resolution by individually reconstructing each particle and using the best measurement for each (tracker, ECAL, HCAL)
- Needs transverse and longitudinal granularity

Hadronic calorimeter

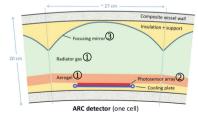
- Sensitivity down to few 100 MeV
- Single hadron resolution of 25–50%/ \sqrt{E}
- ullet Particle Flow o Enough for jet resolution of \sim 3–4 %

Particle flow calorimetry (M. Dam)

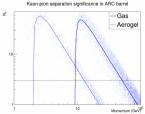
Particle identification: Distinguishing K, μ , π , e, γ


- Kaon ID for flavour tagging (s jets contain more kaons) and flavour physics
- \bullet γ /neutral hadron separation for particle flow reconstruction
- Background suppression in flavour physics (e.g $B_s^0 \to D_s K$ from $B_s^0 \to D_s \pi$)

Drift chamber as tracker


• dE/dx and/or cluster counting (dN/dx)

Timing measurement for time-of-flight

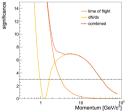

• O(30) ps to get PID at low momenta (LGADs, MAPS, etc.). O(100)m² of sensors needed Ring imaging Cherenkov (RICH) detectors

Kaon-pion separation using drift chamber and TOF (F. Bedeschi [8])

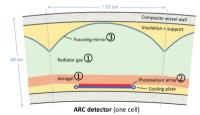
Cell of ARC detector for FCC-ee (R. Forty'

Kaon-pion seperation in ARC (M. Tat)

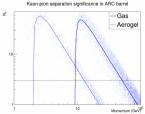
Particle identification: Distinguishing K, μ , π , e, γ


- Kaon ID for flavour tagging (s jets contain more kaons) and flavour physics
- ullet γ /neutral hadron separation for particle flow reconstruction
- Background suppression in flavour physics (e.g $B_s^0 \to D_s K$ from $B_s^0 \to D_s \pi$)

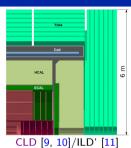
Drift chamber as tracker

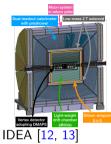

• dE/dx and/or cluster counting (dN/dx)

Timing measurement for time-of-flight


• O(30) ps to get Let's build some detectors with these ingredients!) m² of sensors needed Ring imaging Chereline Vivieri, detection

Kaon-pion separation using drift chamber and TOF (F. Bedeschi [8])


Cell of ARC detector for FCC-ee (R. Forty'


Kaon-pion seperation in ARC (M. Tat)

FCC-ee detector *concepts* + variations (RICH, different trackers, ...)

- ILC $(\rightarrow$ CLIC) \rightarrow FCC-ee $(\rightarrow \mu \text{Col})$
- Si vertexing and Si tracking/TPC
- Highly-granular ECAL and HCAL, CALICE-like
- Solenoid coil outside calorimeter
 system


- Si vertexing
- Drift chamber (down to 1.6% X_0 , $dN_{\text{ion.}}/dx$)
- Silicon wrapper with T.O.F
- Crystal ECAL, light solenoid, dual-readout calorimeter
 - μ -RWELL muon detector in return yoke

- Si vertexing
- Drift chamber, silicon wrapper
- Noble liquid ECAL, Pb/W+LAr or W+LKr
- ECAL and solenoid coil in same cryostat
- CALICE-like or TileCal-like HCAL

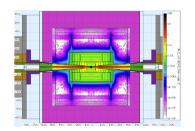
Differences at linear e^+e^- colliders

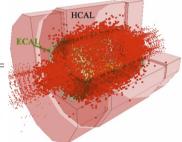
Bunch structure at CLIC [15]
No continuous bunch collisions as in circular colliders

- ightarrow Allows to power off on-detector electronics in-between bunch trains ightarrow Makes cooling easier
- ightarrow Need $\mathcal{O}(5\,\text{ns})$ time resolution to deal with beam backgrounds
- → Time-projection-chamber as tracker is feasible, since number of primary ions is limited (period between bunch trains). At FCC-ee: Extremely challenging
- → 1-2 orders of magnitude less radiation damage

Circular colliders better at low \sqrt{s} , linear better at high \sqrt{s}

- Linear collider experiments optimised for larger momenta
 - Larger B fields of 4 T at CLIC (limited to 2 T at Z pole), smaller tracker
 - Larger depth of hadronic calorimeter
 - Smaller beam pipe at FCC-ee, but cooled


Differences at 3 or $10 Tm_e V$ muon colliders



Main challenges:

- Intense beam-induced background (muons constantly decaying into detector)
 - → Very complex machine-detector interface design
 - ightarrow Radiation levels at HL-LHC levels or ~ 1 order above
 - → Timing to suppress beam induced background hits
- "HL-LHC detectors with amazing timing and better resolution" or "FCC-ee detectors with amazing timing"
- High-energy shower containment, measurment of very high-momentum particles

,	Vertex Detector	Inner Tracker	Outer Tracker
Cell type	pixels	macropixels	microstrips
Cell Size	$25\mathrm{\mu m} imes 25\mathrm{\mu m}$	$50\mu\mathrm{m} \times 1\mathrm{mm}$	$50\mathrm{\mu m} \times 10\mathrm{mm}$
Sensor Thickness	50 µm	$100\mathrm{\mu m}$	$100\mathrm{\mu m}$
Time Resolution	$30\mathrm{ps}$	$60\mathrm{ps}$	$60\mathrm{ps}$
Spatial Resolution	$5\mu\mathrm{m} \times 5\mu\mathrm{m}$	$7\mathrm{\mu m} \times 90\mathrm{\mu m}$	$7\mathrm{\mu m} imes 90\mathrm{\mu m}$

FCC-hh (check [] for details)

Not so difficult

FCC-hh (check [11] for details)

Take ATLAS

FCC-hh (check [] for details)

Take ATLAS, strap two LHCb's to it on both sides

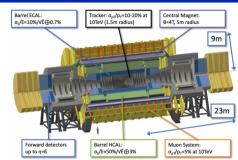
FCC-hh (check [11] for details)

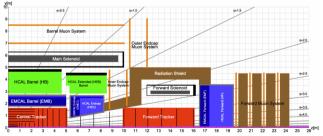
Take ATLAS, strap two LHCb's to it on both sides, reconstruct events with pile-up of 1000

FCC-hh (check [16] for details)

Take ATLAS, strap two LHCb's to it on both sides, reconstruct events with pile-up of 1000, make it sustain 100 times more radiation than HL-LHC (10^{18} NIEL)

FCC-hh (check [11] for details)




Take ATLAS, strap two LHCb's to it on both sides, reconstruct events with pile-up of 1000, make it sustain 100 times more radiation than HL-LHC (10¹⁸ NIEL), extend forward coverage

FCC-hh (check [11] for details)

Take ATLAS, strap two LHCb's to it on both sides, reconstruct events with pile-up of 1000, make it sustain 100 times more radiation than HL-LHC (10^{18} NIEL), extend forward coverage, you're done

Conclusions

Lots of challenges for all proposed colliders.

If approved, the next 5 years will be the time in which the collaborations for the next generation of collider experiments will be formed.

Huge room for contribution, innovation, and crazy ideas...

Conclusions

Lots of challenges for all proposed colliders.

If approved, the next 5 years will be the time in which the collaborations for the next generation of collider experiments will be formed.

Huge room for contribution, innovation, and crazy ideas... from you!

Thanks!

Links to other good intro talks

- Mogens Dam and Nadia Pastrone @ Future Colliders for ECRs Workshop
- Mogens Dam @ CERN EP R&D day 2022

References I

- [1] X. Mo, G. Li, M.-Q. Ruan, and X.-C. Lou, *Physics cross sections and event generation of* e⁺e⁻ annihilations at the CEPC, Chinese Physics C 40 (2016) 033001, https://doi.org/10.1088/1674-1137/40/3/033001.
- [2] B. Auchmann, et al., FCC Midterm Report, June, 2024.
- [3] S. D. Vita, et al., A global view on the Higgs self-coupling at lepton colliders, Journal of High Energy Physics 2018 (2018), https://doi.org/10.1007/jhep02(2018)178.
- [4] T. Miralles, Sensitivity study of $B^0 \to K^{*0} \tau^+ \tau^-$ at FCC-ee, in Proceedings of 20th International Conference on B-Physics at Frontier Machines PoS(BEAUTY2023), p. , 060. 2024.
- [5] F. Blekman, et al., Jet Flavour Tagging at FCC-ee with a Transformer-based Neural Network: DeepJetTransformer, 2024. https://arxiv.org/abs/2406.08590.
- [6] S. Amrouche, et al., The Tracking Machine Learning Challenge: Accuracy Phase, pp., 231–264.
 Springer International Publishing, Nov., 2019. https://doi.org/10.1007/978-3-030-29135-8_9.
- [7] M. Lucchini, et al., New perspectives on segmented crystal calorimeters for future colliders, Journal of Instrumentation 15 (2020) P11005–P11005, https://doi.org/10.1088/1748-0221/15/11/p11005.
- [8] F. Bedeschi, L. Gouskos, and M. Selvaggi, Jet flavour tagging for future colliders with fast simulation, The European Physical Journal C 82 (2022), https://doi.org/10.1140/epjc/s10052-022-10609-1.
- [9] N. Bacchetta, et al., CLD A Detector Concept for the FCC-ee, arXiv:1911.12230 [physics.ins-det].
- [10] D. Dannheim, et al., CERN Yellow Reports: Monographs, Vol 1 (2019): Detector Technologies for CLIC, tech. rep., 2019.
- [11] T. I. Collaboration and contact Ties Behnke, The ILD detector at the ILC, 2019. https://arxiv.org/abs/1912.04601.

References II

- [12] IDEA Collaboration, G. F. Tassielli, A proposal of a drift chamber for the IDEA experiment for a future e⁺e⁻ collider, in Proceedings of 40th International Conference on High Energy physics — PoS(ICHEP2020).
 Sissa Medialab. Feb., 2021.
- [13] FCC Collaboration, FCC-ee: The Lepton Collider, The European Physical Journal Special Topics 228 (2019) 261–623.
- [14] M. Aleksa, et al., Calorimetry at FCC-ee, The European Physical Journal Plus 136 (2021) 1066.
- [15] A. Levy, CLICdp Overview: Overview of physics potential at CLIC, 2015. https://arxiv.org/abs/1501.02614.
- [16] FCC Collaboration, FCC-hh: The Hadron Collider, The European Physical Journal Special Topics 228 (2019) 755-1107.
- [17] A. Ciarma, M. Boscolo, G. Ganis, and E. Perez, Machine Induced Backgrounds in the FCC-ee MDI Region and Beamstrahlung Radiation, Proceedings of the 65th ICFA Advanced Beam Dynamics Workshop on High Luminosity Circular e+e- Colliders eeFACT2022 (2022) Italy, https://jacow.org/eefact2022/doi/JACoW-eeFACT2022-TUZAT0203.html.

How to concretisise the detector designs?

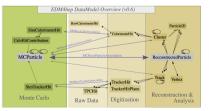
A lot of work done for the feasibility study, but many points still open

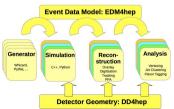
- Requirements to the accelerator? (backgrounds, space constraints, etc.)
- Expected performance? What can we do with the particles we get?
- What next-gen detector technologies can benefit the FCC-ee physics program? Different detector concepts?

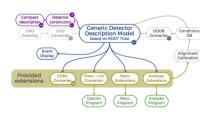
Feedback-loop

```
Sensor perf. \xrightarrow{\text{detector}} Subdetector perf. \xrightarrow{\text{sample}} physics perf. \xrightarrow{\text{theory}} sensor specification input input
```

What you can do:

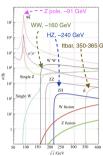

- Develop your new instrumentation, e.g. within the Detector R&D (DRD) collaborations
- Describe your detector (variants) in simulation, perform/implement/improve reconstruction
- Sample analysis: Study a process you're interested in, compare different detectors

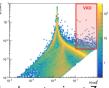

The common software vision: Key4hep



Key4hep is a huge ecosystem of software packages adopted by all future collider projects, complete workflow from generator to analysis

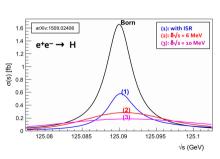
- Event data model: EDM4hep for exchange among framework components
 - Podio as underlying tool, for different collision environments
 - Including truth information
- Data processing framework: Gaudi
- Geometry description: DD4hep, ability to include CAD files
- Package manager: Spack: source /cvmfs/sw.hsf.org/Key4hep/setup.sh

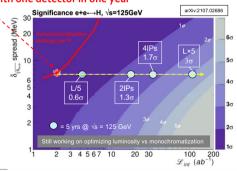



FCC-ee collision environment at the Z pole

- \odot : e^+e^- collisions are *clean* there's no QCD in the initial state
- \odot : Very high inst. luminosity of $140 \times 10^{34} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$ thanks to 50 MHz bunch collision rate ($t_{BC} = 20 \, \text{ns}$)
 - Very high rate of interesting events (200 kHz of Z) that need to be read out and saved (and simulated!)
 - Considerable beam backgrounds, mainly from incoherent pairs
 - Hit rate of $\mathcal{O}(200 \, \text{MHz/cm}^2)$ for innermost layer
 - → Trigger-less readout will be challenging
 - "Pile-up" of 200 kHz/50 MHz = 0.004 at Z-pole
 - Integrate over of a couple of bunch crossings?
 - → But need to check impact on uncertainties
 - Timing of $\mathcal{O}(\text{few ns} 1 \, \mu\text{s})$
 - $\mathcal{O}(1 \times 10^{14} \text{ 1 MeV } n_{\rm eg} \text{cm}^{-2})$ and $\mathcal{O}(10 \text{ MRad}/100 \text{ kGy})$ per year

 e^+e^- annihilation cross section [1]


Incoherent pairs at Z pole [17]


Higgs physics bonus: Electron Yukawa

Gives mass to e, in nature everywhere! Unique to FCC-ee, in dedicated run at $\sqrt{s} = m_H$

- One of the toughest challenges, which requires in particular, at $\sqrt{s} = 125 \text{ GeV}$
 - ♦ Higgs boson mass prior knowledge to a couple MeV, requires at least the design lumi at \sqrt{s} = 240 GeV
 - Huge luminosity, achievable with with several years of running and possibly 4 IPs
 - $\sqrt{\text{s}}$ monochromatisation : Γ_{H} (4.2 MeV) \ll natural beam energy spread (~100 MeV)
- First studies indicate a significance of 0.4σ with one detector in one year

P. Janot