

Universität Zürich

Where is the future taking us?*

Marko Pesut University of Zürich

*Biased personal perspectives

04.02.2025, Bern

Swiss Institute of **Particle Physics**

Where has the past taken us?

- Understanding of Yang-Mills gauge theories:
 - $SU(2) \times U(1)$ structure
- Flavour and CKM: peculiar Yukawa pattern, CP violation
- Consistency conditions (anomaly can.)
- All QFTs are Effective Field Theories: RGEs, Wilsonian approach to renormalization

Special Relativity +Quantum Mechanics

 $\begin{aligned} \mathcal{I} &= -\frac{1}{4} F_{A\nu} F^{A\nu} \\ &+ i F \mathcal{D} \mathcal{V} + h.c. \\ &+ \mathcal{V}_i \mathcal{Y}_{ij} \mathcal{V}_j \mathcal{P} + h.c. \\ &+ |\mathcal{D}_{A} \mathcal{P}|^2 - V(\mathcal{P}) \end{aligned}$

- QCD: asymptotic freedom, SSB of chiral sym.

All QFTs are EFTs...

All QFTs are EFTs...

Nothing seen yet ... NP must be **really heavy** !

 $\Lambda_{\rm EW} \ll \Lambda_{\rm UV}$

 $m_H^2 \sim c \Lambda_{\rm UV}^2$ vs $m_H = 125 \,{\rm GeV}$

Naturalness wants **close by** New Physics scale $\Lambda_{
m UV}\lesssim {\cal O}({
m TeV})$

All QFTs are EFTs...

We already have "New" Physics!

We already have "New" Physics!

We already have "New" Physics!

Is the Higgs elementary or composite ?

Similar Mechanism for the Higgs ?

[More on this idea later]

The Flavour Puzzle

Hierarchical pattern of fermion masses

10^{-2} 10^{-1} 10^{-1} 10^{-1} 10^{-1}	GeV

nich^{uzu}

The Flavour Puzzle

Exact $U(3)^5$ flavour symmetries

The Flavour Puzzle

 $\Rightarrow U(2)^n$ approx. flavour symmetry

Vacuum Stability

> The value of the Higgs mass suggests that the EW vacuum is *meta-stable*

RGE of the Higgs self coupling

[1307.3536]

Standard Model Puzzles & Mysteries

- > The Higgs is at the *heart* of many of SM puzzles: naturalness, flavour, vacuum stability,...
- > We also face many challenges / mysteries: Dark Matter, charge quantization, Strong CP problem,
 - matter-antimatter asymmetry, cosmological constant, early universe, quantum gravity...

Standard Model Puzzles & Mysteries

> The Higgs is at the *heart* of many of SM puzzles: naturalness, flavour, vacuum stability,...

> We also face many challenges / mysteries: Dark Matter, charge quantization, Strong CP problem,

matter-antimatter asymmetry, cosmological constant, early universe, quantum gravity...

What are we looking for ?

- SM Parameters (CKM, Higgs self couplings, light Yukawa...)
- SM puzzles & mysteries + Higgs 2.
- Missing pieces (DM, matter-antimatter, cosmo. const...) 3.

Standard Model Puzzles & Mysteries

> The Higgs is at the *heart* of many of SM puzzles: naturalness, flavour, vacuum stability,...

> We also face many challenges / mysteries: Dark Matter, charge quantization, Strong CP problem,

matter-antimatter asymmetry, cosmological constant, early universe, quantum gravity...

What are we looking for ?

- SM Parameters (CKM, Higgs self couplings, light Yukawa...)
- SM puzzles & mysteries + Higgs 2.
- Missing pieces (DM, matter-antimatter, cosmo. const...) 3.

What are our guiding principles ?

Learn more about the Higgs (+EW)

Why Flavour ?

The low-energy flavour prospects at FCC-ee come largely from the tera- \mathbf{Z} run: Of the $10^{12} Z$ -bosons produced at tera-Z: • 15% decay to *b* • 12% decay to *c* • 3% decay to τ

FCC-ee combines advantages of B factories and LHC + open new frontiers

Clean environment + huge statistics + full range of (boosted) B mesons [2106.01259]

Credits: Joe Davighi's and Lukas Allwicher's talks @ FCC workshop 2025

Complementarity with LHC & Belle II

[More on this in Armin's and Pantelis's talk]

Why Flavour ?

Flavour-Changing processes are rare (e.g. FCNC: GIM + loops + CKM suppressions)
BSM might not respect these features...

E.g. a flavour non-universal Z'

Credits: Joe Davighi's and Lukas Allwicher's talks @ FCC workshop 2025

Why Flavour ?

Flavour-Changing processes are *rare* (e.g. FCNC: GIM + loops + CKM suppressions) BSM might not respect these features...

E.g. a flavour non-universal Z'

Credits: Joe Davighi's and Lukas Allwicher's talks @ FCC workshop 2025

RGE effects become *crucial* @FCC-ee!

[See Case Study II]

Why Flavour ?

Flavour-Changing processes are *rare* (e.g. FCNC: GIM + loops + CKM suppressions) BSM might not respect these features...

Credits: Joe Davighi's and Lukas Allwicher's talks @ FCC workshop 2025

[Allwicher, Isidori, Pesut w.i.p]

Fits are not enough ... need to have a concrete UV picture in mind a.k.a a model !

Credits: Matthew McCullough's talk @ FCC workshop 2025

Not all SMEFT parameter space can be spanned by UV models

BSM states that match to dim-6 SMEFT (@ tree-level)

Scalar	S	\mathcal{S}_1	\mathcal{S}_2	arphi	Ξ	Ξ_1	Θ_1	Θ_3
	$(1,1)_{0}$	$(1,1)_{1}$	$(1,1)_2$	$(1,2)_{\frac{1}{2}}$	$(1,3)_{0}$	$(1,3)_1$	$(1,4)_{\frac{1}{2}}$	$(1,4)_{\frac{3}{2}}$
	ω_1	ω_2	ω_4	Π_1	Π_7	ζ		
	$(3,1)_{-\frac{1}{3}}$	$(3,1)_{\frac{2}{3}}$	$(3,1)_{-\frac{4}{3}}$	$(3,2)_{\frac{1}{6}}$	$(3,2)_{\frac{7}{6}}$	$(3,3)_{-\frac{1}{3}}$		
	Ω_1	Ω_2	Ω_4	Υ	Φ			
	$(6,1)_{rac{1}{3}}$	$(6,1)_{-rac{2}{3}}$	$(6,1)_{rac{4}{3}}$	$(6,3)_{\frac{1}{3}}$	$(8,2)_{\frac{1}{2}}$			
Fermion	N	E	Δ_1	Δ_3	Σ	Σ_1		
	$(1,1)_0$	$(1,1)_{-1}$	$(1,2)_{-\frac{1}{2}}$	$(1,2)_{-\frac{3}{2}}$	$(1,3)_{0}$	$(1,3)_{-1}$		
	U	D	Q_1	Q_5	Q_7	T_1	T_2	
	$(3,1)_{\frac{2}{3}}$	$(3,1)_{-\frac{1}{3}}$	$(3,2)_{\frac{1}{6}}$	$(3,2)_{-\frac{5}{6}}$	$(3,2)_{\frac{7}{6}}$	$(3,3)_{-\frac{1}{3}}$	$(3,3)_{\frac{2}{3}}$	
Vector	\mathcal{B}	\mathcal{B}_1	${\mathcal W}$	\mathcal{W}_1	${\cal G}$	\mathcal{G}_1	${\cal H}$	\mathcal{L}_1
	$(1,1)_0$	$(1,1)_{1}$	$(1,3)_0$	$(1,3)_1$	$(8,1)_0$	$(8,1)_1$	$(8,3)_{0}$	$(1,2)_{\frac{1}{2}}$
	\mathcal{L}_3	\mathcal{U}_2	\mathcal{U}_5	\mathcal{Q}_1	\mathcal{Q}_5	${\mathcal X}$	${\mathcal Y}_1$	\mathcal{Y}_5
	$(1,2)_{-\frac{3}{2}}$	$(3,1)_{rac{2}{3}}$	$(3,1)_{\frac{5}{3}}$	$(3,2)_{\frac{1}{6}}$	$(3,2)_{-\frac{5}{6}}$	$(3,3)_{\frac{2}{3}}$	$(\bar{6},2)_{\frac{1}{6}}$	$(\overline{6},2)_{-rac{5}{6}}$

TeV

"Granada Dictionary" [1711.10391]

(Almost) all these new states are probed by EWPOs at one-loop

Credits: Matthew McCullough's talk @ FCC workshop 2025

Lets suppose BSM affect dim-6 operators at tree-level...what are all the possible states ?

What about the Higgs?

What about the Higgs?

Case Study II: Higgs Compositeness « QCD-like » dynamics ${\cal G}$ Strong sector resonances $\mathcal{O}_F, \, ho_{\mathrm{T}}$ \mathcal{H} Higgs as pNGB $\,H\,$

Compositeness scale cuts off quantum corrections to the Higgs potential

Wulzer & Panico 2015 Agashe et al. 2005,

Particle mass (GeV)

$$g_{VVh} = g_{VVh}^{SM} \sqrt{1 - \xi}$$

$$g_{VVhh} = g_{VVhh}^{SM} (1 - 2\xi) \qquad \xi = \frac{v_E^2}{4H}$$

Wulzer & Panico 2015 Agashe et al. 2005,

Case Study II: Higgs Compositeness « QCD-like » dynamics Strong sector resonances $\mathcal{O}_F, \rho_{\mathrm{T}}$ \mathcal{H} Higgs as pNGB $\,H\,$

- Order of magnitude improvement
- HL-LHC interplay with FCC

Collider	HL-LHC	$\text{FCC-ee}_{240 \rightarrow 365}$	FCC-INT
Lumi (ab^{-1})	3	5 + 0.2 + 1.5	30
Years	10	3 + 1 + 4	25
g_{HZZ} (%)	1.5	$0.18 \ / \ 0.17$	0.17/0.16
$g_{\rm HWW}$ (%)	1.7	$0.44 \ / \ 0.41$	0.20/0.19
$g_{\mathrm{Hbb}} \ (\%)$	5.1	$0.69 \ / \ 0.64$	0.48/0.48
$g_{ m Hcc}$ (%)	SM	1.3 / 1.3	0.96/0.96
g_{Hgg} (%)	2.5	1.0 / 0.89	0.52/0.5
$\mid g_{\mathrm{H} au au}$ (%)	1.9	$0.74 \ / \ 0.66$	0.49/0.46
$\mid g_{\mathrm{H}\mu\mu} \ (\%)$	4.4	8.9 / 3.9	0.43/0.43
$\mid g_{\mathrm{H}\gamma\gamma}$ (%)	1.8	3.9 / 1.2	0.32/0.32
$\mid g_{\mathrm{HZ}\gamma} \ (\%)$	11.	- / 10.	0.71/0.7
$g_{ m Htt}$ (%)	3.4	10. / 3.1	1.0/0.95
g_{HHH} (%)	50.	44./33. 27./24.	3-4

[2106.13885]

[More on this in Jason's talk]

$$g_{VVh} = g_{VVh}^{SM} \sqrt{1 - \xi}$$

$$g_{VVhh} = g_{VVhh}^{SM} (1 - 2\xi) \qquad \xi = \frac{v_{EW}^2}{4F^2}$$

Wulzer & Panico 2015 Agashe et al. 2005,

 $^{2}_{\mathrm{EW}}$

$M_ ho\gtrsim 5~{ m TeV}_{ m ATLAS,~[2402.10607]}$

CMS, [2310.19893]

Case Study II: Higgs Compositeness

- Composite Higgs will be put under a microscope @ FCC-ee!

Conclusion

Fundamental questions need to be answered ... and we need a machine ASAP !

Understand better the Higgs (naturalness, flavour,...)

Unbiased exploration of whatever Nature may be hiding

FCC-ee, via precision measurements, *indirectly* probes very *broad* and *well-motivated* classes of UV extensions of the SM

Thank you!