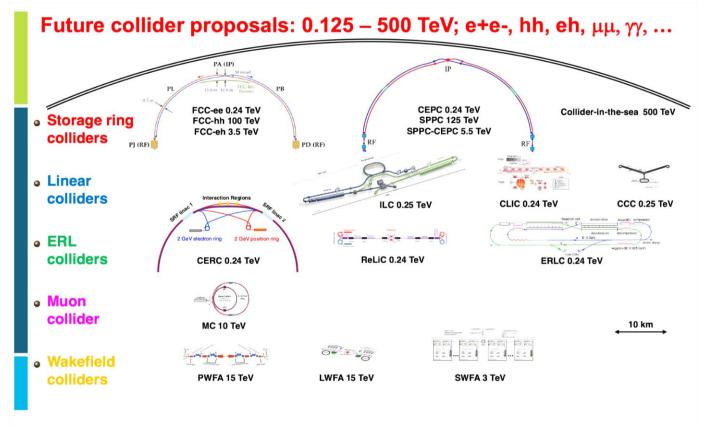


Overview of Future Collider Options

D. Schulte CHIP/CHART Workshop, June 2023



Implementation Task Force (ITF) looked at many different proposals

Cannot cover them all

Select according to European view

Key Collider Options

Europe: ESPPU concluded

- Long term ambition is high-energy hadron collider
- Higgs factory is most urgent project after HL-LHC

Plan A is FCC

- FCC-ee, e⁺e⁻ circular collider, 91.2-365 GeV
- FCC-hh, hadron collider, O(100 TeV), same tunnel

Prudently prepare plan B

- CLIC, an e⁺e⁻ linear collider 380 GeV-3 TeV
- Muon collider, as initiated by ESPPU, 3-10+ TeV

Also in the R&D Roadmap

- Energy recovery linacs (LHeC, FCC-eh, electronproton)
- Plasma technology

US:

Waiting for the P5 process to finish But interest in community for

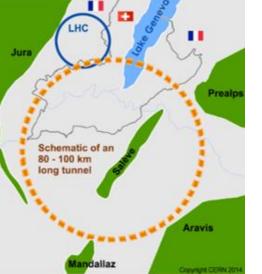
- Linear collider (mainly CCC), 0.24-3 TeV
- Muon collider, 3-10+ TeV

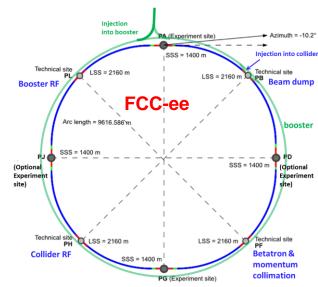
Japan: ILC, 0.25-1 TeV, 3 TeV

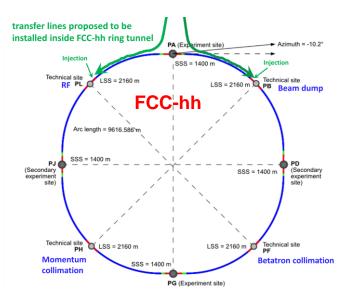
China: Interest in CepC/SppS, comparable to FCC-ee/FCC-hh

Many more less mature proposals

Will not give all details but shorter reminder of key projects and a bit on the novel ones



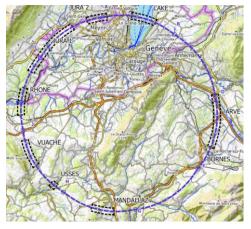

FCC Overview


Similar to LEP/LHC staging Focus on site studies

FCC-ee at Z, WW, ZH and tt

FCC-hh at 80-116 TeV, depending on magnet technology (Nb₃SN vs HTS)

CepC and SppC is a similar approach in China


D. Schulte

FCC Goals for 2021-2025

- demonstration of the geological, technical, environmental and administrative feasibility of the tunnel and surface areas and optimisation of placement and layout of the ring and related infrastructure;
- pursuit, together with the Host States, of the preparatory administrative processes required for a potential project approval to identify and remove any showstopper;
- optimising design of colliders and their injector chains, supported by R&D to develop the needed key technologies;
- elaboration of a sustainable operational model for the colliders and experiments in terms of human and financial resource needs, as well as environmental aspects and energy efficiency;
- development of a consolidated cost estimate, as well as the funding and organisational models needed to enable the project's technical design completion, implementation and operation;
- identification of substantial resources from outside CERN's budget for the implementation of the first stage of a possible future project (tunnel and FCC-ee);
- □ consolidation of the physics case and detector concepts for both colliders.

Site development ongoing

D. Schulte

FCC Design

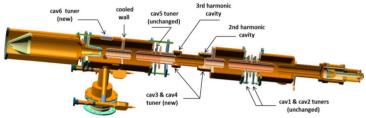
Parameter	unit	Z	ww	ZH	tt
Sqrt(s)	GeV	91.2	160	240	365
Max power	MW	222	247	273	357
Energy/year	TWh	1.07	1.21	1.33	1.77
Luminosity / IP	10 ³⁴ cm ⁻² s ⁻¹	182	19.4	7.3	1.33
Beam current	А	1280	135	26.7	5

Work on FCC-ee design, e.g. collider ring lattice

- Aim at 4 detectors
- High current at Z poses important challenges
- Beamstrahlung gives important bunch lengthing
- Very fast bunch-to-bunch feedback (6-7 turns)

Hadron collider lattice follows FCC-ee

Energy 80-116, depending on magnet technology choice

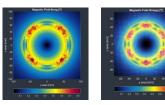

About 560 MW power consumption

Luminosity up to $30 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

FCC Technology Development Examples

Efficient RF power sources (400 & 800 MHz)

Efficient twin aperture arc dipoles



800 MHz 5-cell Nb prototype / JLAB, 2 K

400 MHz 1-,2- & 4-cell Nb/Cu , 4.5 K

Under study: CCT HTS quad's & sext's for arcs

FNAL dipole demonstrator 4-layer cos theta 14.5 T Nb₃Sn in 2019

450 mm

D. Schulte

^{6.5}Future Collider Projects, CHIP/CHART June 2023

136 mm

International Linear Collider (ILC) (Plan) Euro-XFEL Operation started from 2017 -100 cryomodules -800 cavities -17.5 GeV (Pulsed) -900 cryomodules -8,000 cavities LAL/Saclave -250 GeV (Pulsed) INFN KEK SINAR SHINE (under construction) -75 cryomodules -~600 cavities - 8 GeV (CW)

北上市

Ichinosek

BDS, DR, DH

奥州市 Oshu

D. Schulte

Future Collider Projects, CHIP/CHART June 2023

大明城市

陸前高田市

Kesen-numa

AWBO

ILC Progress

Recent progress:

A subset of the technical activities of the full ILC preparation phase programme have been identified as critical. Moving forward with these is being supported by the MEXT (ministry) providing increased funding. European ILC studies, distributed on five main activity areas, is foreseen to concentrate (for the accelerator part) on these technical activities :

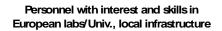
A1 with three SC RF related tasks

• SRF: Cavities, Module, Crab-cavities

A2 Sources

 Concentrate on undulator positron scheme – fast pulses magnet, consult on conventual one (used by CLIC and FCC-ee)

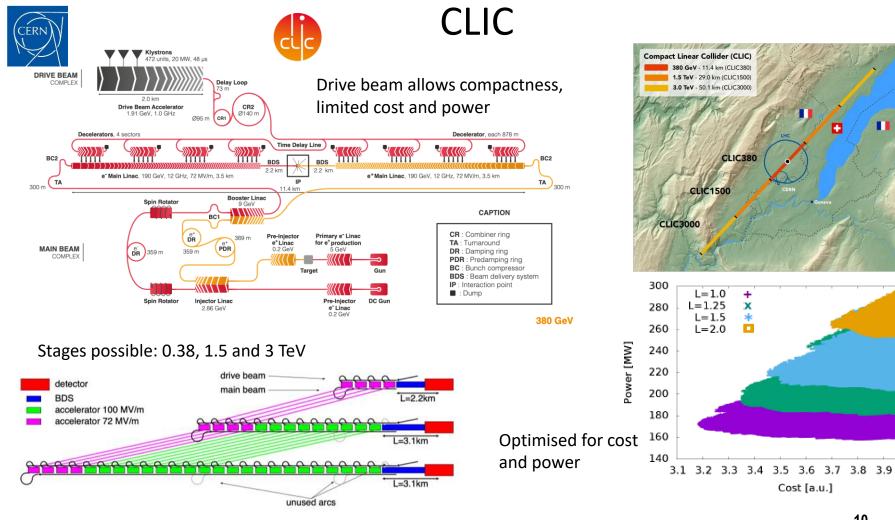
A3 Damping Ring including kickers


Low Emittance Ring community, and also kicker work in CLIC and FCC

A4 ATF activities for final focus and nanobeams

• Many European groups active in ATF, more support for its operation expected using the fresh funding

A5 Implementation including Project Office


 Dump, CE, Cryo, Sustainability, MDI, others (many of these are continuations of on-going collaborative activities)

CERN LC, project office (~within existing LC resources at CERN)

> EAJADE, MC exchange project supporting Higgs factory personnel exchange to Japan and the US

Material funds as estimated (major/core part from KEK), in some cases complemented by local funding

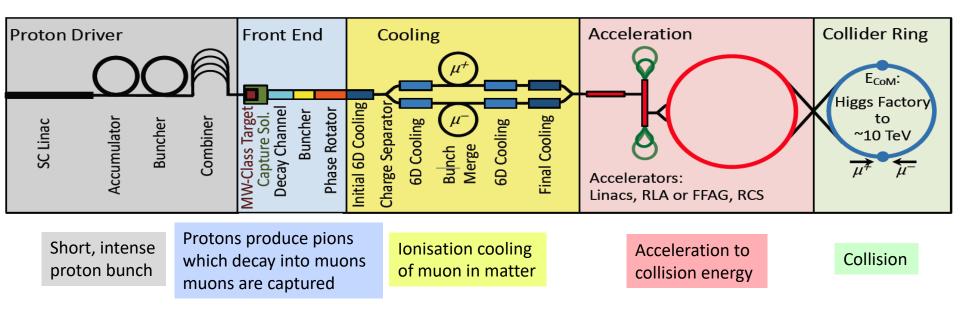
D. Schulte

Future Collider Projects. CHIP/CHART June 2023

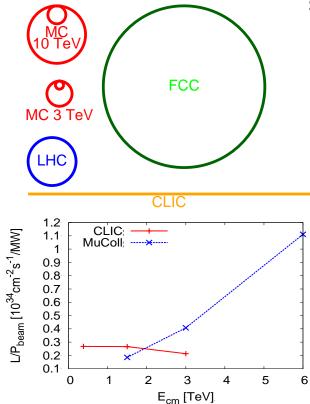
4 4.1

CLIC Work

Project Readiness Report as a step toward a TDR Assuming ESPP in ~ 2026, Project Approval ~ 2028, Project (tunnel) construction can start in ~ 2030.



Muon Collider Overview


Muon collider has been studied in the US ("MAP"), experiments have been performed in the UK ("MICE") and some alternatives have been considered at INFN ("LEMMA")

Renewed interest thanks to **technology and design advances** and new goal of **very high-energy, high-luminosity lepton collisions**

Would be easy if the muons did not decay Lifetime is $\tau = \gamma \times 2.2 \ \mu s$

D. Schulte

Muon Collider Promises

US Snowmass Implementation Task Force: Th. Roser, R. Brinkmann, S. Cousineau, D. Denisov, S. Gessner, S. Gourlay, Ph. Lebrun, M. Narain, K. Oide, T. Raubenheimer, J. Seeman, V. Shiltsev, J. Straight, M. Turner, L. Wang et al.

	CME [TeV]	Lumi per IP [10 ³⁴ cm ⁻² s ⁻¹]	Years to physics	Cost range [B\$]	Power [MW]
FCC-ee	0.24	8.5	13-18	12-18	290
ILC	0.25	2.7	<12	7-12	140
CLIC	0.38	2.3	13-18	7-12	110
ILC	3	6.1	19-24	18-30	400
CLIC	3	5.9	19-24	18-30	550
MC	3	1.8	19-24	7-12	230
МС	10	20	>25	12-18	300
FCC-hh	100	30	>25	30-50	560

Judgement by ITF, take it *cum grano salis*

Future Collider Projects, CHIP/CHART June 2023

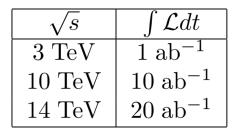
Goal and Accelerator R&D Roadmap

Muon collider is on European Accelerator R&D Roadmap

• Reviews in Europe and US found no insurmountable obstacle

Implementing workplan

- Goal: Project Evaluation Report and R&D Plan to next ESPPU/other processes
- 10+ TeV collider, potential 3 TeV initial stage
- CERN has budget in MTP, hosting a collaboration
- Design Study supported by EC, Switzerland, UK and partners contribute
- Strong interest in US community to join


Key work

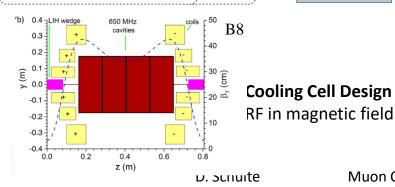
- Design of critical beam complex
- Address technologies
- Prepare demonstrator

http://arxiv.org/abs/2201.07895

Label	Begin	End	Description		ational		imal
				[FTEy]	[kCHF]	[FTEy]	[kCHF]
MC.SITE	2021	2025	Site and layout	15.5	300	13.5	300
MC.NF	2022	2026	Neutrino flux miti-	22.5	250	0	0
			gation system				
MC.MDI	2021	2025	Machine-detector	15	0	15	0
			interface				
MC.ACC.CR	2022	2025	Collider ring	10	0	10	0
MC.ACC.HE	2022	2025	High-energy com-	- 11	0	7.5	0
			plex				
MC.ACC.MC	2021	2025	Muon cooling sys-	47	0	22	0
			tems				
MC.ACC.P	2022	2026	Proton complex	26	0	3.5	0
MC.ACC.COLL	2022	2025	Collective effects	18.2	0	18.2	0
			across complex				
MC.ACC.ALT	2022	2025	High-energy alter-	11.7	0	0	0
			natives				
MC.HFM.HE	2022	2025	High-field magnets	6.5	0	6.5	0
MC.HFM.SOL	2022	2026	High-field	76	2700	29	0
			solenoids				
MC.FR	2021	2026	Fast-ramping mag-	27.5	1020	22.5	520
			net system				
MC.RF.HE	2021	2026	High Energy com-	10.6	0	7.6	0
			plex RF				
MC.RF.MC	2022	2026	Muon cooling RF	13.6	0	7	0
MC.RF.TS	2024	2026	RF test stand + test	10	3300	0	0
			cavities				
MC.MOD	2022	2026	Muon cooling test	17.7	400	4.9	100
			module				
MC.DEM	2022	2026	Cooling demon-	34.1	1250	3.8	250
			strator design				
MC.TAR	2022	2026	Target system	60	1405	9	25
MC.INT	2022	2026	Coordination and	13	1250	13	1250
			integration				
			Sum	445.9	11875	193	2445

Table 5.5: The resource requirements for the two scenarios. The personnel estimate is given in full-time equivalent years and the material in KCHF. It should be noted that the personnel contains a significant number of PhD students. Material badgets do not include badget for travel, personal IT equipment and similar costs. Colours are included for comparison with the resource profile Fig. 5.7.

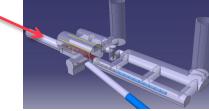

Muon Collider R&D Examples

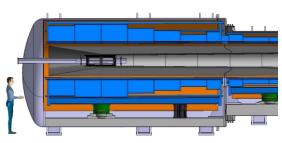

Detector studies

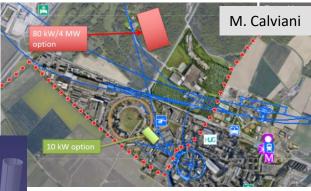
- 10 TeV design
- Beam-induced background Promising but more work required

Siting/environemental impact

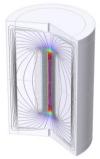
• Want negligible impact on environnement




Muon production/cooling demonstrator


CERN example: PS beam

- 10¹³ p at 20 GeV every 1.2 s
- Could use SPL beam


20 T target solenoid in HTS ITER 13 T LTS solenoid could already work

HTS solenoids

40 T HTS solenoid

Muon Collider, Heidelberg, January 2023

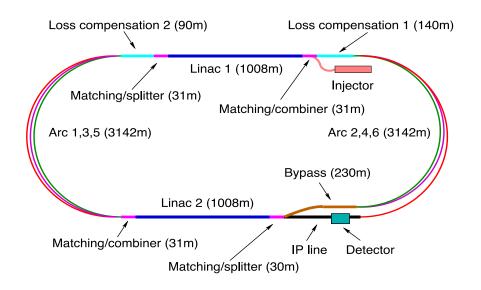
Other Ideas: CCC and LHeC/FCC-eh

CCC:

Linear collider with copper structures cooled to 50-70 K

- Less loss in copper
 - Less peak RF power required
- But need cryogenic power
 - Cheaper

In conclusion:


- Somewhat cheaper
- But need to address challenges
 - Need to identify more of them
- Not more power efficient

	LHeC CDR	HL- LHeC	HE- LHeC	FCC -he
E _p [TeV]	7	7	12.5	50
E _e [GeV]	60	60	60	60
L [10 ³³ cm ⁻² s ⁻¹]	1	8	12	15

D. Schulte

LHeC, FCC-eh Collider electron from linac with LHC/FCC hadron beam Recirculating linac allows to recover beam energy

800 MW beam power for 100 MW power consumption

Future Collider Projects, CHIP/CHART June 2023

CERN

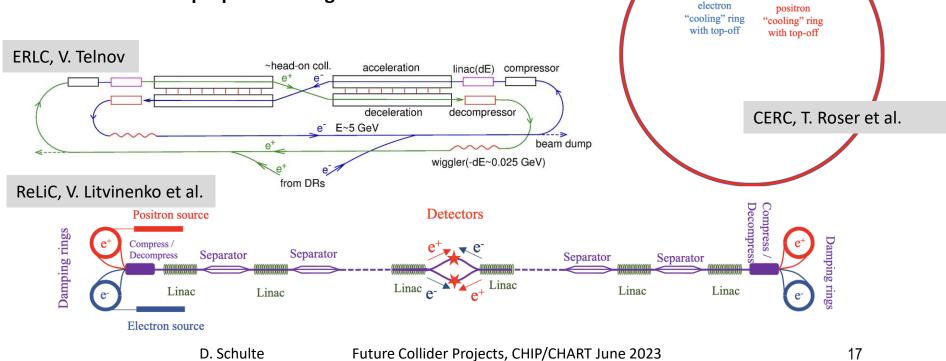
Other Energy Recovery: ERLC, ReLiC, CERC

IR2

IR1

2 GeV

SRFlinacl


IR..X

2 GeV

SRF linac 2

Several proposals based on recirculation and energy recovery

- Actually not a new idea, many discussions in the past
 - E.g. H. Gerke, K. Steffen in 1979, DESY PET-79/04
- take current proposals cum grano salis

Conclusion

Several interesting projects are being developed

• Range of promises and risks

Europe focuses on

- FCC
- CLIC
- Muon collider

Other global options

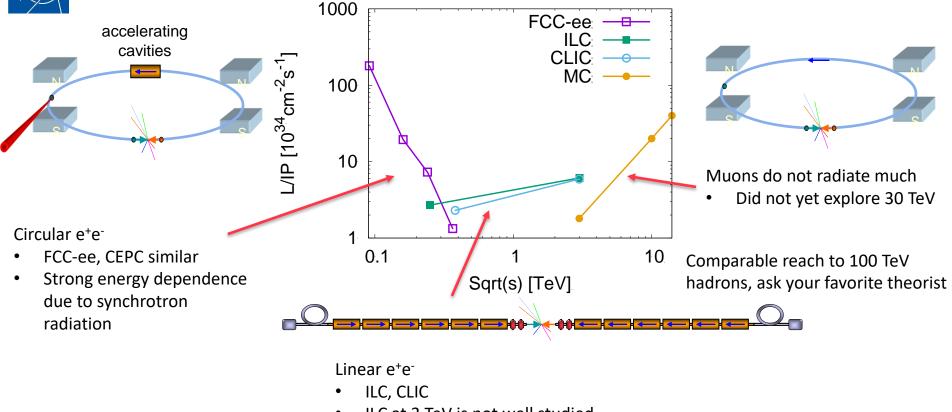
- ILC
- CepC/SppC
- CCC?

Sustainability is of importance to the projects

• Part of their design but not enough time to talk about it very much

Thanks to all from whom I stole slides, In particular: Frank Zimmermann, S. Stapnes the FCC, MAP, ILC, CLIC and IMCC collaborations The US Snowmass Implementation Task Force

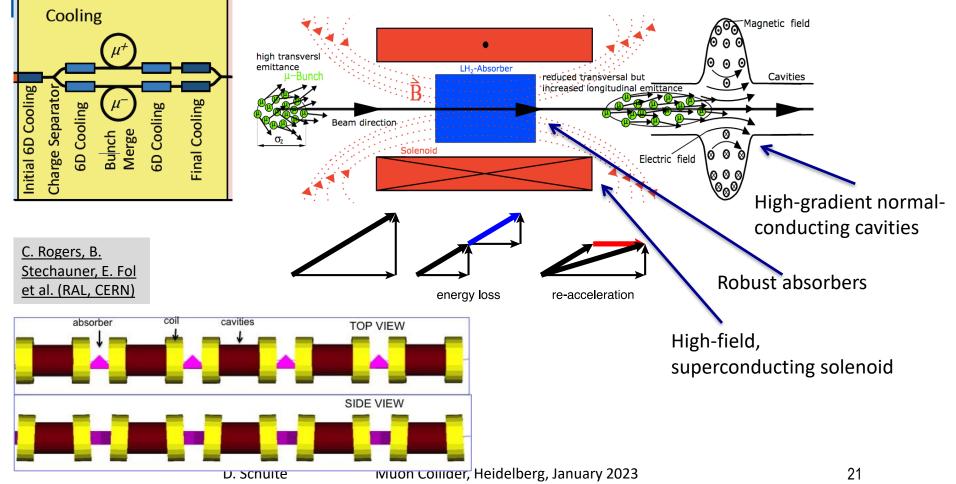
• • •

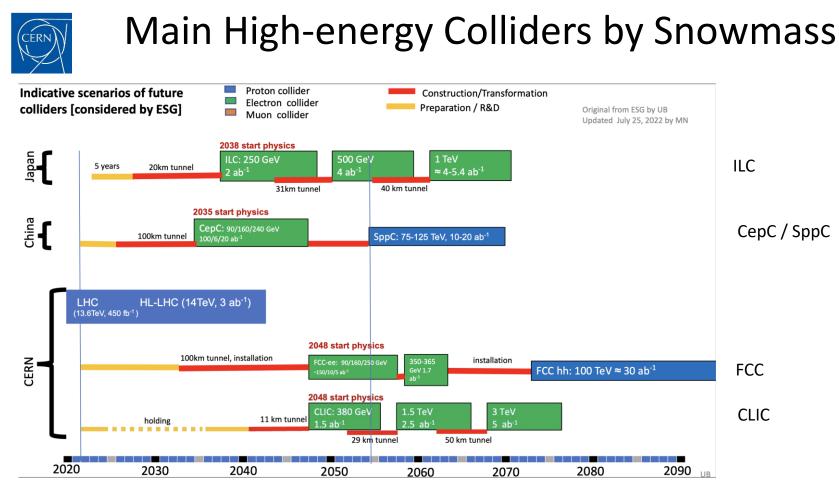


Reserve

D. Schulte

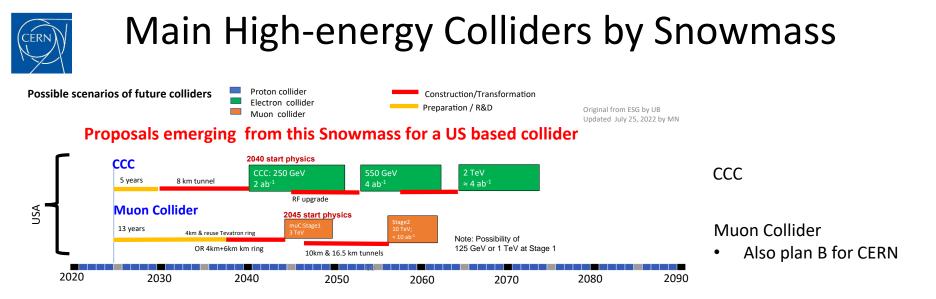
Lepton Collider Energies and Luminosities




• ILC at 3 TeV is not well studied

Future Collider Projects, CHIP/CHART June 2023

Muon Cooling Principle


Timeline in Europe driven by HL-LHC

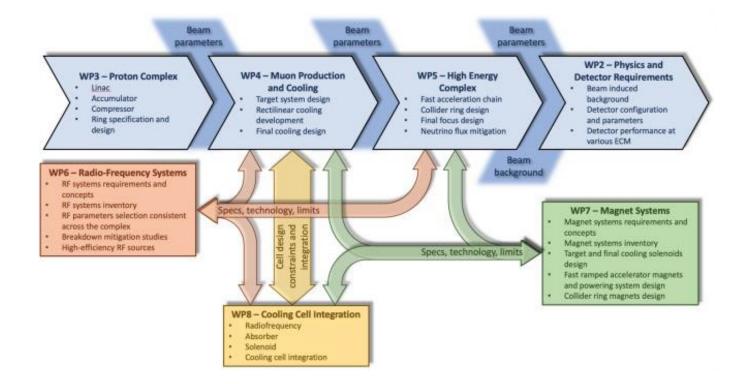
ILC

FCC

CLIC

CepC / SppC

Interest in the US to host a high-energy frontier project


Muon collider considered a plan B for CERN

• Timeline will depend on

D. Schulte Futur

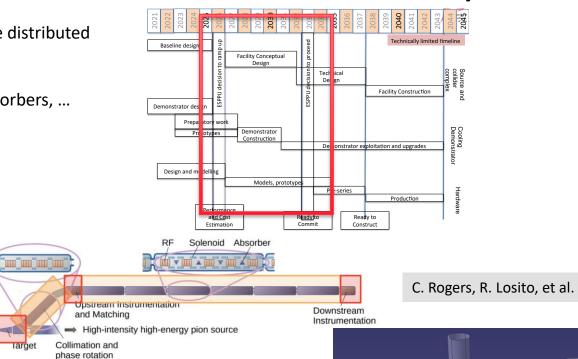
Current Work

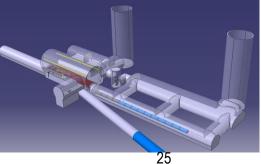
CDR Phase, R&D and Demonstrator Facility

Broad R&D programme required and can be distributed world-wide

- Models and prototypes
 - Magnets, Target, RF systems, Absorbers, ...
- CDR development
- Integrated tests, also with beam

Integrated cooling demonstrator is a key facility


 look for an existing proton beam with significant power

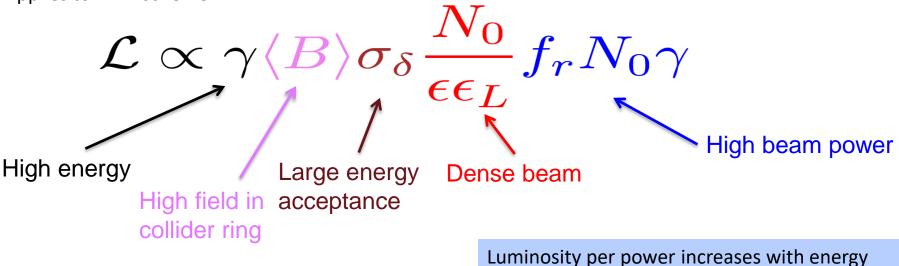

Different sites are being considered

- CERN, FNAL, ESS are being discussed
- J-PARC also interesting as option

Could be used to house physics facility

 Are trying to explore what are good options

Future Collider Projects, CHIP/CHART June 2023


Reserve

Muon Collider Luminosity Scaling

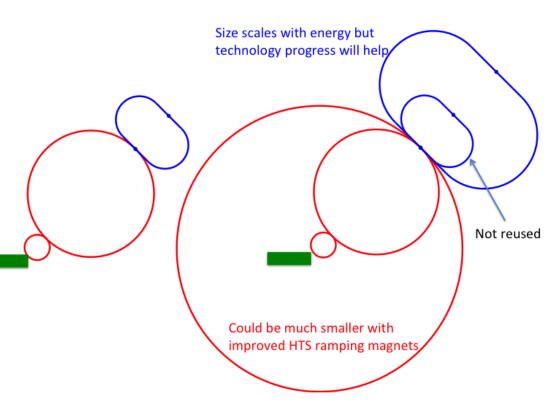
Fundamental limitation Requires emittance preservation and advanced lattice design

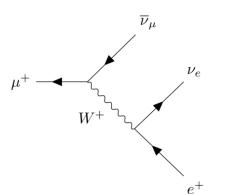
Applies to MAP scheme

scaling

27

Provided technologies can be made available


Constant current for required luminosity

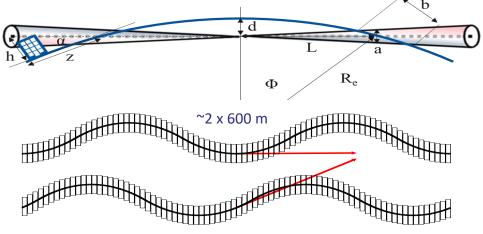

Staging

Ideally would like full energy right away, but staging could lead to faster implementation

- Substantially less cost for a first stage
- Can make technical compromises
 - e.g. 8 T NbTi magnets would increase collider ring from 4.5 to 6 km and reduce luminosity by 25%
- Timeline might be more consistent with human lifespan
- Upgrade adds one more accelerator and new collider ring
- only first collider ring is not being reused

Muon Decay

About 1/3 of energy in electrons and positrons:

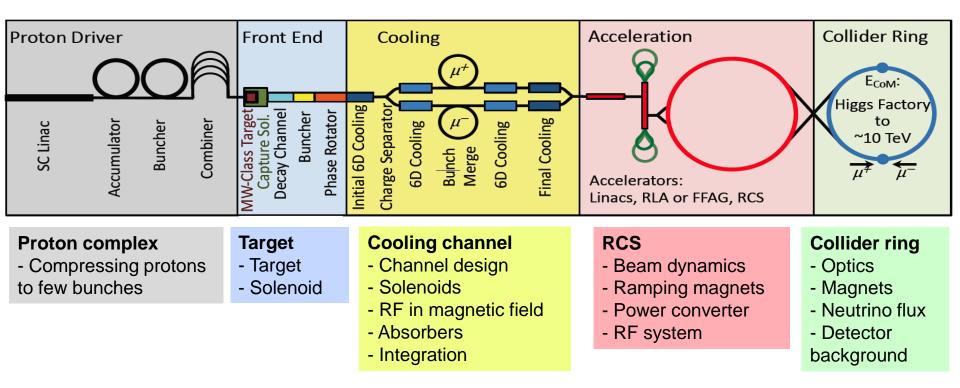

Experiments needs to be protected from background by masks

- simulations of 1.5, 3 and 10 TeV
- optimisation of masks and lattice design started
- first results look encouraging
- will be discussed at ICHEP

Collider ring magnets need to be shielded from losses Losses elsewhere will also need to be considered but are less severe

Neutrino flux to have negligible impact on environment

- want to be negligible (same level as LHC)
- opening cone decreases, cross section and shower energy increase with energy
- Above about 3 TeV need to make beam point in different vertical directions
- Mechanical system with 15cm stroke, 1% vertical bending
- Length of pattern to be optimised for minimal impact on beam D. Schulte Future Collider


Future Collider Projects, CHIP/CHART June 2023

D. Lucchesi, A. Lechner, C Carli et al.

29

Key Challenges

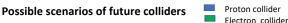
Initial Target Parameters

Target integrated luminosities	Parameter	Unit	3 TeV	10 TeV	14 TeV	CLIC at 3 TeV
\sqrt{s} $\int \mathcal{L}dt$	L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20	40	2 (6)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ν	10 ¹²	2.2	1.8	1.8	
10 TeV 10 ab^{-1}	f _r	Hz	5	5	5	
$\begin{vmatrix} 10 & 10 \\ 14 & \text{TeV} \end{vmatrix} = \frac{10 \text{ ab}}{20 \text{ ab}^{-1}}$	P _{beam}	MW	5.3	14.4	20	28
· · · · · · · · · · · · · · · · · · ·		km	4.5	10	14	
500 -	3>	Т	7	10.5	10.5	
200	i.	MeV m	7.5	7.5	7.5	
	/ E	%	0.1	0.1	0.1	
50	, ⁵ z	mm	5	1.5	1.07	
20	3	mm	5	1.5	1.07	
5 10 15 20 25	30 B	μm	25	25	25	
$\sqrt{s_{\mu}}$ [TeV]	- x,y	μm	3.0	0.9	0.63	
D. Schulte		r Projects, CHIP/C	HART June 202	23		31

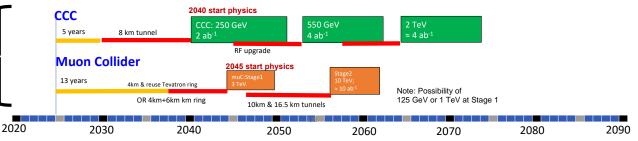
US Snowmass

Muon collider

trong interest in the US community


in muon collider

- seen as an energy frontier machine
- decoupled from LC
- US community wants funding for **R&D**
- Goal: match European effort


Community interested in the US to host a muon collider

USA

Proposals emerging from this Snowmass for a US based collider

Timelines technologically limited

- Uncertainties to be sorted out
 - Find a contact lab(s)
 - Successful R&D and feasibility demonstration for CCC and Muon Collider
 - Evaluate CCC progress in the international context, and consider proposing an ILC/CCC [ie CCC used as an upgrade of ILC] or a CCC only option in the US.
 - International Cost Sharing

Consider proposing hosting ILC in the US.

Meenakshi Narain: Energy Frontier / Large Experiments, Snowmass Community Summer Study July 17-26, 2022

Construction/Transformation

Preparation / R&D

Original from ESG by UB

Updated July 25, 2022 by MN

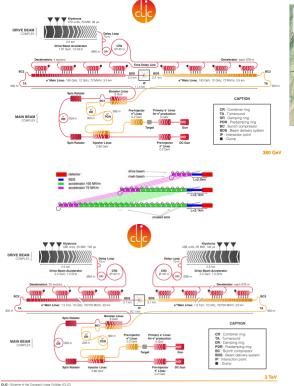
US Snowmass, cont.

Implementation Task Force

Muon Collider is a viable option for the HEP future

They made cost and power estimate for muon collider take it *cum grano salis*

Place MC in same risk tier as FCC-hh


ITF's Look Beyond Higgs Factories

viable		CME (TeV)	Lumi per IP (10^34)	Years, pre⊒ project R&D	Years to 1 st Physics	Cost Range (2021 B\$)	Electric Power (MW)
o future	FCCeeE0.24	0.24	8.5	0[2	13-18	12 18	290
	ILC=0.25	0.25	2.7	0[2	<12	7-12	140
nd power	CLICE0.38	0.38	2.3	0=2	13-18	7-12	110
n collider	HELEN 0.25	0.25	1.4	5=10	13-18	7-12	110
t	CCC-0.25	0.25	1.3	345	13-18	7-12	150
salis	CERC(ERL)	0.24	78	5 ⊑1 0	19 - 24	12 30	90
	CLIC-3	3	5.9	345	19 -24	18-30	~550
risk tier as	ILC:3	3	6.1	5E10	19 -2 4	18-30	~400
	MCI3	3	2.3	>10	19-24	7-12	~230
	MC=10=IMCC	10-14	20	>10	>25	12 ⊡ 8	O(300)
	FCChh=100	100	30	>10	>25	30 50	~560
Thomas Roser et al	Collider in Sea	500	50	>1Ů	>25	>80	»1000

D. Schulte

CLIC Energy upgrades

CLIC can easily be extended into the multi-TeV region (3 TeV studied in detail)

Extend by extending main linacs, increase drivebeam pulse-length and power, and a second drivebeam to get to 3 TeV ILC has foreseen extensions to ~ 1TeV with existing or modestly improved SCRF technology:

- However, improvements in gradients with for example travelling wave structures or Nb₃Sn coating have motivated ideas of reaching ~3 TeV in 50km (gradients well above 50 MeV/m needed)
- <u>https://arxiv.org/abs/2204.01178</u> and <u>https://www.frontiersin.org/articles/10</u> 479/full

ARTERACT Badie Stepnessy superconductivity is as superconstruction of the step of the Badie Stepnessy superconductivity is a superconstruction of the step of the conducting EF (1007) controls has karpened significantly ever the has devided, and it stBP to controls has barpened significantly ever the has devided, and the SBP controls has barpened significantly ever the has devided. The state of the formations of the state of the state of the state of the state of the formations on generic way then add him states the two out runs for importance, in this paper we denote the layment devident and the state of the state of the states of the state of the states of the state of the states of the state of the state of the state of the state of the states and the state of the states of the state of the states of the state of the states of the states of the states of the state of the state of the states of the stat

> itted to the Proceedings of the US Community Study a the Future of Particle Physics (Snowmass 2021)

D. Bours, S. Barancestonevil, B. Bertreel, A. Brazz, J. A. cond., M. Christer, M. C. Bertser, F. F. Frenz, F. Granz, B. Barane, J. Bararen, M. Barane, F. F. Frenz, F. Granz, B. Barane, J. Bararen, M. Barane, J. S. Barane, Y. Barane, B. Barane, J. Barane, A. Barane, S. Barane, S. Barane, J. S. Barane, M. Lang, Y. M. Martenzio, J. S. Barane, J. S. Barane, M. Barane, K. Barane, B. Barane, B. Baran, J. S. Barane, B. Barane, A. Barane, J. Barane, B. Bara, J. Barane, B. Barane, A. Barane, J. Barane, B. Bara, J. Barane, B. Barane, A. Barane, J. Barane, B. Bara, J. S. Barane, B. Barane, A. Barane, J. Barane, B. Jano, B. Charane, J. S. Barane, W. Barane, J. Barane, J. Barane, B. Jano, B. Charane, J. S. Barane, G. Wan, J. X. J. W. Sharane, J. Marone, B. J. Barane, B. Barane, J. Ba

Will describe briefly later:

C3 (cool copper) is similar to CLIC in gradient and a 2 TeV C3 concept have been formulated. C3 would also fit into an ILC tunnel with its suitable klystron gallery, as a potential upgrade.

D. Schulte

Future Collider Projects, CHIP/CHART

CLIC

Normal-conducting accelerating structures allow high gradients But high losses -> use very short pulses -> requires very high input power -> expensive

Solution is drive beam that compresses 150 microsecond pulse to 250 ns

Accelerator R&D Roadmap

No insurmountable obstacle found for the muon collider

but important need for R&D

Aim at 10+ TeV and potential initial stage at 3 TeV

Full scenario deliverables by next ESPPU/other processes

- Project Evaluation Report
- **R&D Plan** that describes a path towards the collider; Allows to make **informed decisions**

Interim report by end of 2023

Do not yet have the resources of the reduced scenario

- Will do as much as possible, following priorities and available expertise and resources
- Are approaching O(40 FTE)
- Efforts to increase resources

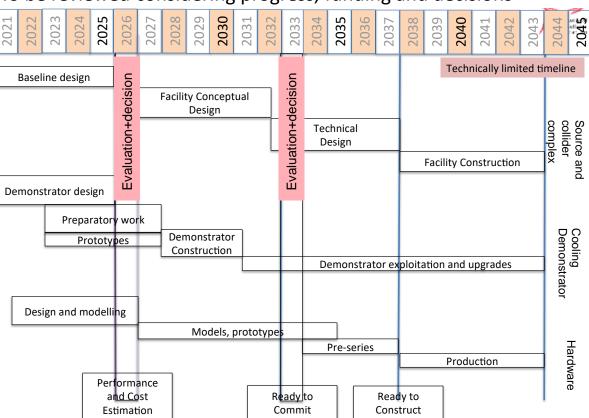
Scenario	FTEy	M MCHF
Full scenario	445.9	11.9
Reduced scenario	193	2.45

http://arxiv.org/abs/2201.07895

Label	Begin	End	Description	Aspirational			imal
			-	[FTEy]	[kCHF]	[FTEy]	[kCHF]
MC.SITE	2021	2025	Site and layout	15.5	300	13.5	300
MC.NF	2022	2026	Neutrino flux miti- gation system	22.5	250	0	0
MC.MDI	2021	2025	Machine-detector interface	15	0	15	0
MC.ACC.CR	2022	2025	Collider ring	10	0	10	0
MC.ACC.HE	2022	2025	High-energy com- plex	11	0	7.5	0
MC.ACC.MC	2021	2025	Muon cooling sys- tems	47	0	22	0
MC.ACC.P	2022	2026	Proton complex	26	0	3.5	0
MC.ACC.COLL	2022	2025	Collective effects across complex	18.2	0	18.2	0
MC.ACC.ALT	2022	2025	High-energy alter- natives	11.7	0	0	0
MC.HFM.HE	2022	2025	High-field magnets	6.5	0	6.5	0
MC.HFM.SOL	2022	2026	High-field solenoids	76	2700	29	0
MC.FR	2021	2026	Fast-ramping mag- net system	27.5	1020	22.5	520
MC.RF.HE	2021	2026	High Energy com- plex RF	10.6	0	7.6	0
MC.RF.MC	2022	2026	Muon cooling RF	13.6	0	7	0
MC.RF.TS	2024	2026	RF test stand + test cavities	10	3300	0	0
MC.MOD	2022	2026	Muon cooling test module	17.7	400	4.9	100
MC.DEM	2022	2026	Cooling demon- strator design	34.1	1250	3.8	250
MC.TAR	2022	2026	Target system	60	1405	9	25
MC.INT	2022	2026	Coordination and integration	13	1250	13	1250
			Sum	445.9	11875	193	2445

Table 5.5: The resource requirements for the two scenarios. The personnel estimate is given in full-time equivalent years and the material in KCHF. It should be noted that the personnel contains a significant number of PhD students. Material budgets do not include budget for travel, personal IT equipment and similar costs. Colours are included for comparison with the resource profile Fig. 5.7.

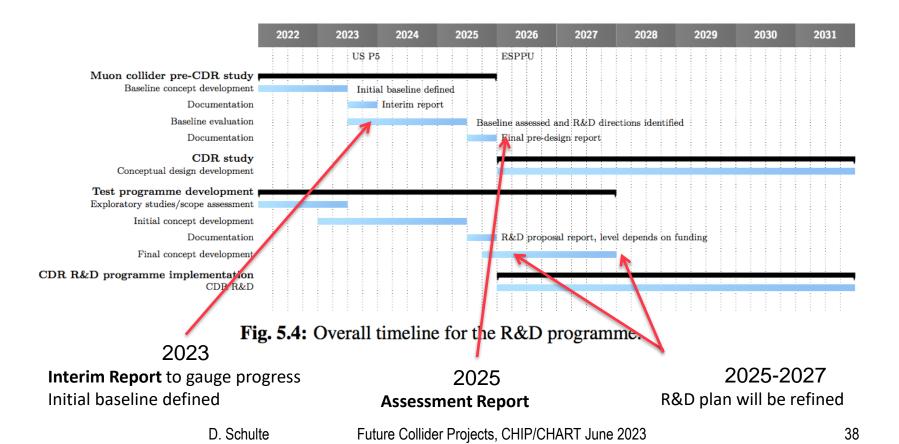
rechnically Limited Timeline (From Roadmap)


Muon collider important in the long term

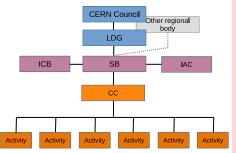
Fastest track option with important ramp-up of resources to see if muon collider could come directly after HL-LHC

 Compromises in performance, e.g. 3 TeV

Needs to be revised but do not have enough information at this point for final plan

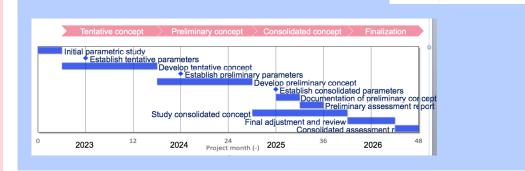

D. Schulte

To be reviewed considering progress, funding and decisions


Roadmap Schedule

Muon Collider Community

Formed **collaboration** to implement and R&D Roadmap for CERN Council



50+ partner institutions 30+ already signed formal agreement

Plan to apply in 2024 for **HORIZON-INFRA-**2024-TECH Goal: prepare experimental programme, e.g. **demonstrator**, **prototypes**, ...

TIARA wants magnet proposal

EU Design Study approved (EU+Switzerland+UK and partners)

US Snowmass has strong support

- to contribute to R&D
- as a collider in the US
- Lia appointed team to prepare P5 ask

Some first contacts with others

International

Collaboration

MoC and Design Study Partners

U

E:

IEIO	CERN
FR	CEA-IRFU
	CNRS-LNCMI
DE	DESY
	Technical University of Darmstadt
	University of Rostock
	КІТ
IT	INFN
	INFN, Univ., Polit. Torino
	INFN, Univ. Milano
	INFN, Univ. Padova
	INFN, Univ. Pavia
	INFN, Univ. Bologna
	INFN Trieste
	INFN, Univ. Bari
	INFN, Univ. Roma 1
	ENEA
Mal	Univ. of Malta
BE	Louvain

		-
	RAL	
	UK Research and Innovation	
	University of Lancaster	
	University of Southampton	
	University of Strathclyde	
	University of Sussex	
	Imperial College London	
	Royal Holloway	
	University of Huddersfield	
	University of Oxford	
	University of Warwick	
	University of Durham	
	ESS	
	University of Uppsala	
	LIP	
	University of Twente	
	Tampere University	
Г	Riga Technical Univers.	

UK

SE

PT NL

FL

LAT

ulte

IS	Iowa State University					
	Wisconsin-Madison					
	Pittsburg University					
	Old Dominion					
	BNL					
hina	Sun Yat-sen University					
	IHEP					
	Peking University					
ST	Tartu University					
U	НЕРНҮ					
	TU Wien					
S	I3M					
	CIEMAT					
	ICMAB					
н	PSI					
	University of Geneva					
	EPFL					

0	KEU
	Yonsei University
ndia	СНЕР
т	INFN Frascati
	INFN, Univ. Ferrara
	INFN, Univ. Roma 3
	INFN Legnaro
	INFN, Univ. Milano Bicocca
	INFN Genova
	INFN Laboratori del Sud
	INFN Napoli
JS	FNAL
	LBL
	JLAB
	Chicago
	Tenessee

US P5 Ask

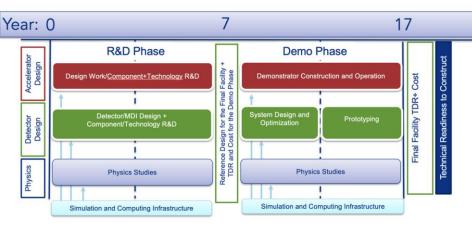
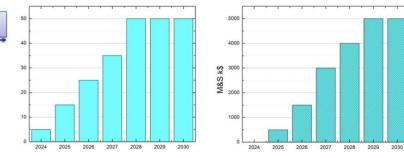


Figure 1: A sketch of the proposed muon collider R&D timeline, along with high-level activities, milestones, and deliverables.


S. Jindariani, D. Stratakis, Sridhara Dasu et al. Goal is to contribute as much as Europe Start of construction a bit later than in Roadmap Will try to harmonise/define scenarios once US joins

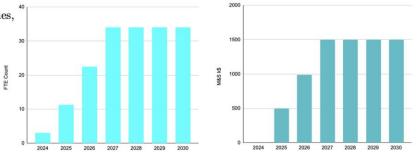
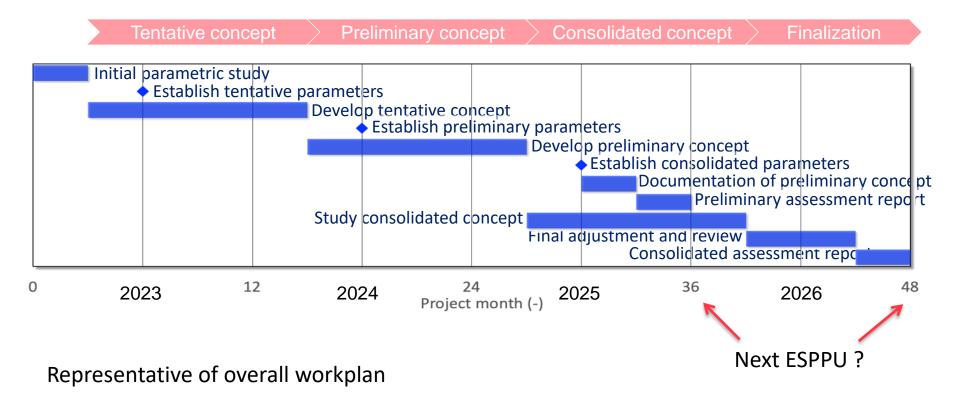
Total resources would approach Roadmap

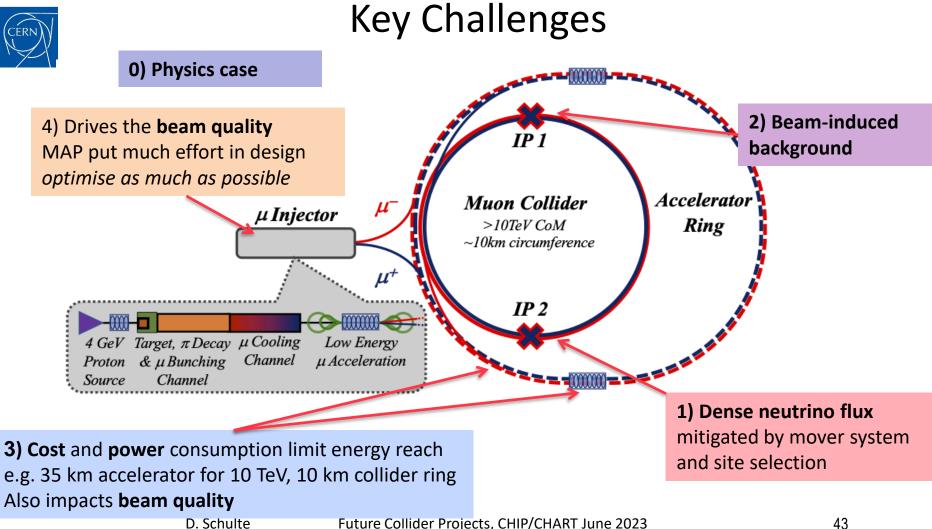
Some increase in Europe and Asia assumed

D. Schulte

- 1-2 years delay
- But profile is different

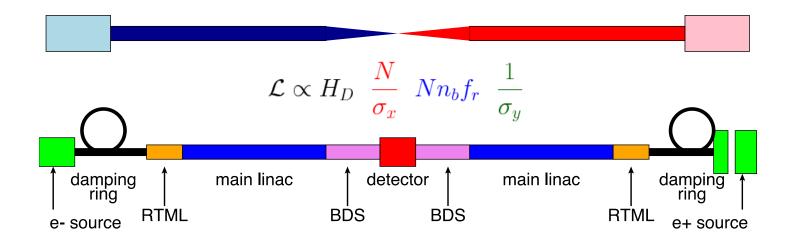
: FTE and M&S profiles for accelerator R&D corresponding to the first phase of the . We assume here that funding can start in 2024. The M&S is in FY23 dollars and n is not included in these estimates.

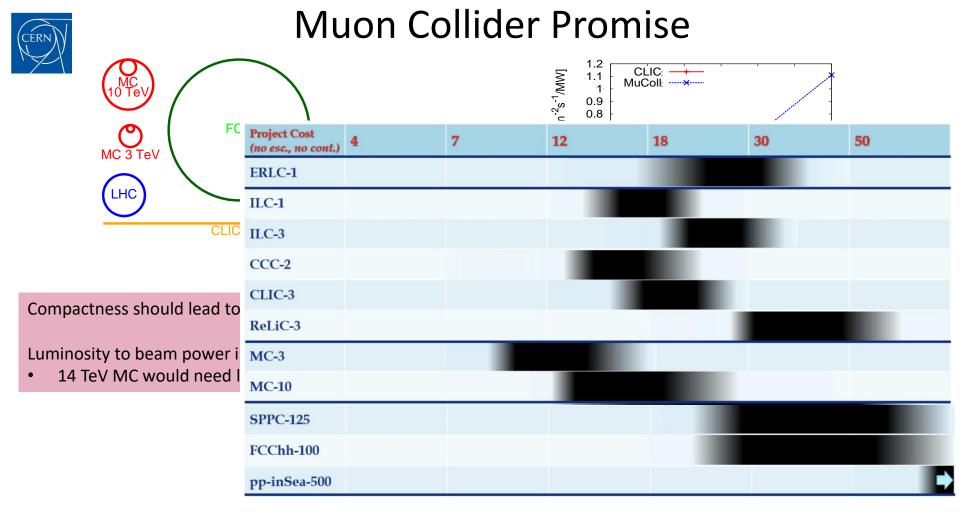




Figure 3: FTE and M&S profiles for detector R&D corresponding to the first phase of the program. We assume here that funding can start in 2024. The M&S is in FY23 dollars and escalation is not included in these estimates.

EU Design Study Timeline

D. Schulte

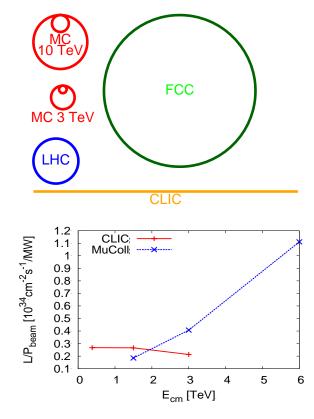



Linear Colliders

Key challenges:

Accelerate the beam in single pass -> high gradient -> high stored RF energy -> high losses

Collider in single pass -> high beam density -> limits from focusing, beam emittance, beamstrahlung, ...


The Cool Copper Collider (CCC)

Rational:

Operate normal conducting structures around 50-70 K

- Reduces loss in accelerating cavities => longer RF pulses => less RF peak power
- But requires cooling

Muon Collider Promises

US Snowmass Implementation Task Force: Th. Roser, R. Brinkmann, S. Cousineau, D. Denisov, S. Gessner, S. Gourlay, Ph. Lebrun, M. Narain, K. Oide, T. Raubenheimer, J. Seeman, V. Shiltsev, J. Straight, M. Turner, L. Wang et al.

	CN [Te		Lumi per IP [10 ³⁴ cm ⁻² s ⁻¹]	Years to physics	Cost range [B\$]	Power [MW]
FCC-ee	0.24		8.5	13-18	12-18	290
ILC	0.25		2.7	<12	7-12	140
CLIC	0.38		2.3	13-18	7-12	110
ILC	3		6.1	19-24	18-30	400
CLIC	3		5.9	19-24	18-30	550
MC	3		1.8	19-24	7-12	230
MC	10		20	>25	12-18	300
FCC-hh	100		30	>25	30-50	560
Judgement by ITF, take it cum grano salis					no salis	

D. Schulte

Sustainability

Sustainability has since long been an implicit consideration by reducing power use and cost

• CLIC did null cost and power optimization by varying all parameters

Will certainly try to improve in the future

- Started proper estimation of CO₂ footprint for some projects
- Challenging since it need to anticipate future changes, e.g. CO₂ for electrical power
- This applies also to CO₂ footprint of materials
 - Some results from power use to produce material and components
 - For concrete also chemical contribution to CO₂ is very important

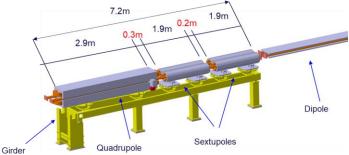
Also started considering impact of collider R&D on energy applications for society

- E.g. solenoid around muon collider target is very similar to central solenoid for ITER
- Potential important application of HTS in wind-based power generators

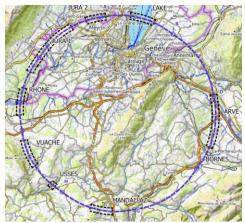
Work on FCC-ee design, e.g. collider ring lattice

- High current at Z poses important challenges
- Beamstrahlung gives important bunch lengthing

FCC

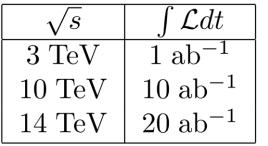

• Very fast bunch-to-bunch feedback (6-7 turns)

Parameter	unit	Z	ww	ZH	tt
Sqrt(s)	GeV	91.2	160	240	365
Max power	MW	222	247	273	357
Energy/year	TWh	1.07	1.21	1.33	1.77
Luminosity / IP	10 ³⁴ cm ⁻² s ⁻¹	182	19.4	7.3	1.33
Beam current	А	1280	135	26.7	5


Machine detector interface

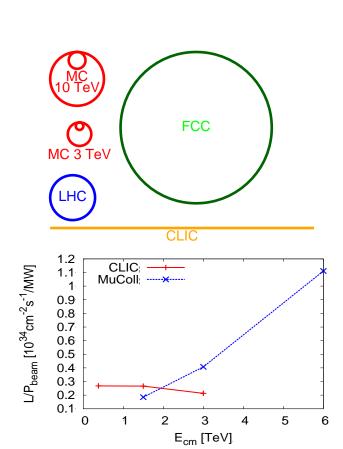
Site development ongoing

D. Schulte


Muon Collider Promises

Cost:

Muon collider compactness expected to reduce cost


Luminosity:

- Should increase with square of energy
- Lumionosity to power constant in LC
- Plasma-based LC face the very same problem
 - Even more severe than in CLIC/ILC
- Muon collider can improve efficiency at higher energy

Goal from physics, current tentative parameters achieve this in 5 years in one detector

Aim 10 TeV collider O(3 TeV) initial stage

US Implementation Task Force

Th. Roser, R. Brinkmann, S. Cousineau, D. Denisov, S. Gessner, S. Gourlay, Ph. Lebrun, M. Narain, K. Oide, T. Raubenheimer, J. Seeman, V. Shiltsev, J. Straight, M. Turner, L. Wang et al.

ITP assessed many colliders and estimated:

- Time to first physics (technical)
- Cost scale
- Power consumption
- Take it *cum grano salis*

	CME [TeV]	Lumi per IP [10 ³⁴ cm ⁻² s ⁻¹]	Years to physics	Cost range [B\$]	Power [MW]
FCC-ee	0.24	8.5	13-18	12-18	290
ILC	0.25	2.7	<12	7-12	140
CLIC	0.38	2.3	13-18	7-12	110
ILC	3	6.1	19-24	18-30	400
CLIC	3	5.9	19-24	18-30	550
MC	3	1.8	19-24	7-12	230
MC	10	20	>25	12-18	300
FCC-hh	100	30	>25	30-50	560

FCC Goals for 2021-2025

- demonstration of the geological, technical, environmental and administrative feasibility of the tunnel and surface areas and optimisation of placement and layout of the ring and related infrastructure;
- pursuit, together with the Host States, of the preparatory administrative processes required for a potential project approval to identify and remove any showstopper;
- optimising design of colliders and their injector chains, supported by R&D to develop the needed key technologies;
- elaboration of a sustainable operational model for the colliders and experiments in terms of human and financial resource needs, as well as environmental aspects and energy efficiency;
- development of a consolidated cost estimate, as well as the funding and organisational models needed to enable the project's technical design completion, implementation and operation;
- identification of substantial resources from outside CERN's budget for the implementation of the first stage of a possible future project (tunnel and FCC-ee);
- consolidation of the physics case and detector concepts for both colliders.

D. Schulte Future Collider Projects, CHIP/CHART June 2023