

Vertex Detectors for FCC-ee: Simulation and Sensor R&D

Freya Blekman^{1,2} Florencia Canelli ³ Kunal Gautam ^{3,4} **Armin Ilg** ³ Anna Macchiolo ³ Eduardo Plörer ^{3,4} ¹DESY, ²Universität Hamburg, ³University of Zürich, ⁴Vrije Universiteit Brussel,

The particle physics community is preparing for the post-LHC era by investigating the feasibility of the Future Circular Collider (FCC, [1]): a 90.6 km circumference collider to serve particle physics until the end of the 21st century. FCC-ee will produce intense e^+e^- collisions at energies of 90–365 GeV, making it an EW, Higgs and top factory. Later, the FCC is equipped with 14–20 T magnets to collide hadrons with energies of 80–116 TeV (FCC-hh).

Adapted from [2].

EW: $5 \cdot 10^{12}$ Z, 10^8 WW, 10^6 t \overline{t}

- ► 20–50 or more improvement in electroweak quantities
- ► Indirect sensitivity to new particles up to 10–70 TeV

Higgs: $1.2 \cdot 10^6$ HZ, 75k WW \rightarrow H

- ► Higgs width at 1.6%
- ► Higgs couplings at percent to sub-percent precision

Flavour: 10^{12} bb, cc, $1.7 \cdot 10^{11}$ $\tau \bar{\tau}$

 \triangleright O(10) more than Belle-II, not limited to $m(\Upsilon(4S))$

And many Figure 1: Annihilation cross sections in e^+e^- collisions. many more!

FCC-ee detector requirements

- e^+ and e^- are **point-like particles** \rightarrow very different than the LHC!
- \blacktriangleright Initial E and p known
- ► Almost no pile-up, no QCD background

FCC-ee running at the Z pole ($\sqrt{s}=91.2\,\mathrm{GeV}$) generates extremely large statistics (tera-Z factory). To benefit from this, the systematic uncertainties need to be kept down to 10^{-4} – 10^{-5}

→ Stringent requirements on FCC-ee detectors!

Vertex detector to determine the spatial locations of the interactions

- ► Efficient flavour tagging (b/c/g/s)
- ► Precise flight distance measurements

Vertex detector requirements:

 \triangleright 3 μ m single-hit resolution

 $ightharpoonup \sigma_{DT}/p_{T}^{2} \simeq 2 \cdot 10^{-5}/\text{GeV} \rightarrow \text{Limit}$ material budget X/X_0 to $\simeq 0.3\%/layer$

The IDEA detector concept for FCC-ee

Injection into collide LSS = 2160 m LSS = 2160 m PB **Beam dump Booster RF** Arc length = 9616.586 m booster SSS = 1400 m (Optional (Optional Experiment **Experiment** PH LSS = 2160 m LSS = 2160 m Technical site **Betatron & Collider RF** momentum collimation

Injection

Common software vision: Key4hep

- ► Adopted by all future collider projects
- ► From generator to analysis
- ► EDM4hep+DD4hep+Gaudi

Enabling plug-and-play functionality and interface with accelerator components

...and its vertex detector in full simulation

CAD (top) design from INFN-Pisa and DD4hep (bottom) implementation

- ► Much higher level of detail than other implementations
- ► Can check for cracks in coverage and assess vertexing performance realistically

Prospects of wafer-scale DMAPS for FCC-ee vertex detectors

Depleted monolithic active pixel sensors are foreseen by all e^+e^- detector proposals for the vertex $\frac{9}{5}$ detector

- ► Sensor and readout in one silicon die
- ► Sensor (silicon) contributes only a small fraction to total material budget
- → Major improvements in tracking and vertexing if X/X_0 is reduced further $\underline{\underline{\mathbb{S}}}$

65 nm development for ALICE ITS3:

Wafer-scale curved sensors

- ➤ One sensor per half-layer only
- ► Self-supporting, air cooling
- → Basically only silicon in vertex Joined team of ALICE ITS3, CERN R&D and other institutes!

Effect of reduced material budget on d_0 resolution in Delphes fast simulation, L. Freitag (BSc. thesis [3])

R&D on 65 nm DMAPS at UZH

Analog pixel test structure (APTS)

- ▶ 16 pixels, 10 to 25 μ m pitch
- ► Analogue readout, different processes
- \rightarrow Test beams, lab tests with Fe-55 source and (eventually) X-ray tube

Goal: Compare different p-well and n-well collection electrode designs

Circuit Exploratoire (CE-65)

- ► 64x32/48x32 pixels, $15/25 \mu m$ pitch
- ▶ Digital readout
- → Test beam this summer, lab test with Fe-55 source

Goal: Long-term development and optimisation towards FCC-ee vertex detectors

Different pixel architectures in APTS

Fe-55 test setup

ALPIDE telescope

[1] FCC Collaboration, FCC-ee: The Lepton Collider, The European Physical Journal Special Topics 228 (2019) 261-623.

[2] X. Mo, G. Li, M.-Q. Ruan, and X.-C. Lou, Physics cross sections and event generation of e^+e^- annihilations at the CEPC, Chinese Physics C 40 (2016) 033001.

[3] L. Freitag, Benefits of Minimizing the Vertex Detector Material Budget at the FCC-ee, 2023. Presented 01 Feb 2023.

CHIPP/CHART Workshop on Sustainability in Particle Physics Sursee, 14-16.06.2023