

Searching for Low-Mass Resonances Decaying into W Bosons

Based on arxiv:2302.07276 (GC, A. Crivellin, S. Bhattacharya, B. Mellado)

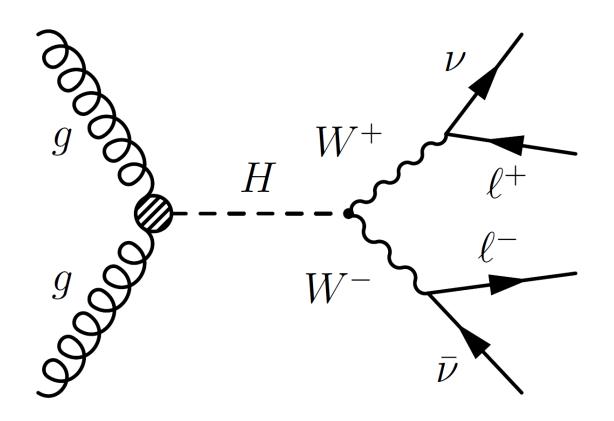
Guglielmo Coloretti (University of Zurich and Paul Scherrer Institute)

Structure of the talk

- 1. Overview and motivations
- 2. Experimental search
- 3. BSM simulation
- 4. Statistical analysis
- 5. Results

Overview and Motivations: Multi-lepton anomalies (MLA)

- MLA display very clean signatures
- MLA motivates existence of new states decaying to WW
- In addition: resonant hints at 150 GeV and 95 GeV in $\gamma\gamma$ and $\tau\tau$ channels
- No dedicated resonant BSM searches for gg o H o WW with full luminosity and scanning down to 95 GeV
- CMS and ATLAS analyses for SM higgs in gg o h o WW with full luminosity 135 fb^{-1} available

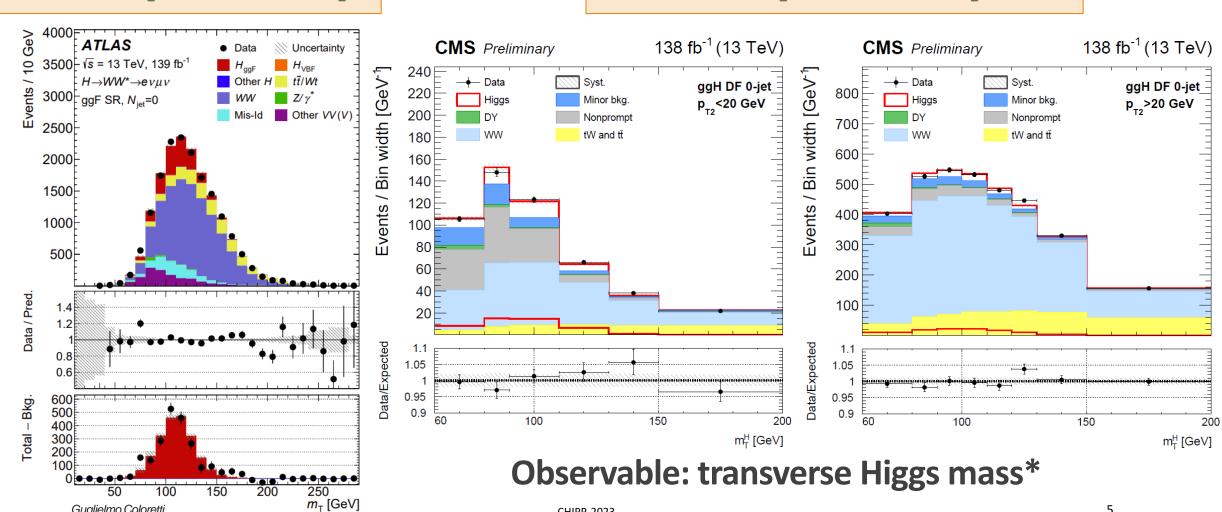

We re-cast CMS and ATLAS SM Higgs analyses to search for new scalars

$gg \rightarrow H \rightarrow WW$

CATEGORY

- 1. 0-jet
- 2. Gluon fusion (ggH)
- 3. DFOS lepton pair

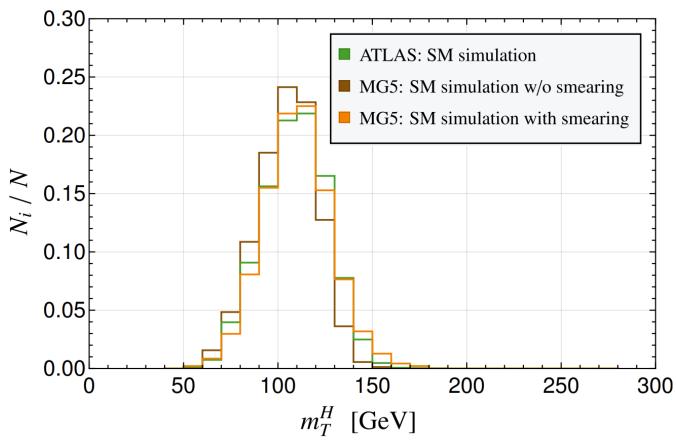
- A pair of different flavour opposite sign (DFOS) leptons
- Addition of missing energy
- Jet veto category
- Exclusion of Drell-Yan background
- Refining to spin-0 candidates



Experimental analysis

ATLAS [ARXIV:2207.00338]

Guglielmo Coloretti


CMS [ARXIV:2206.09466]

Simulation

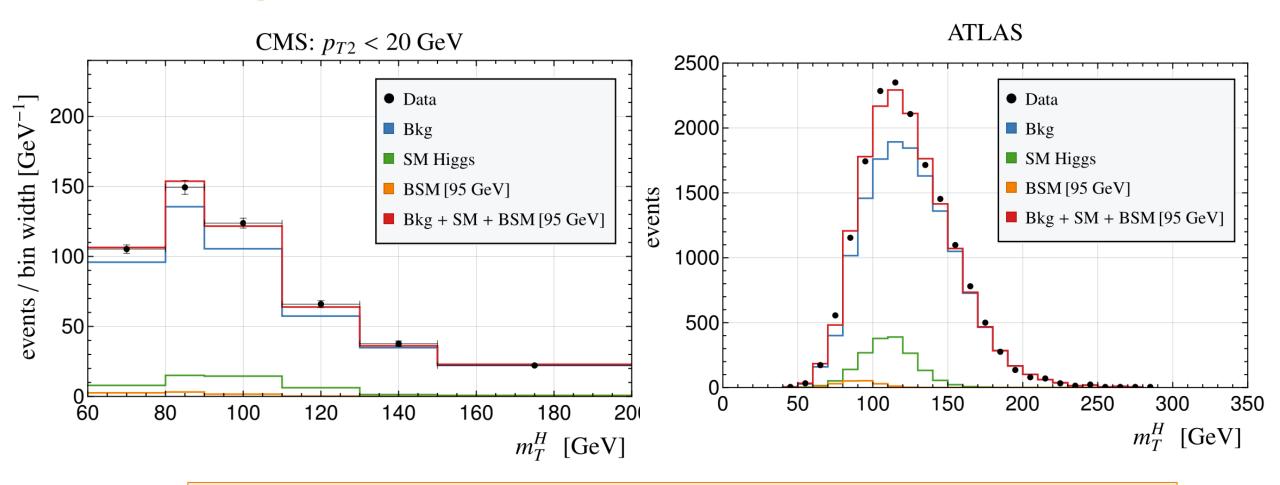
- HEP tools:
 - → MadGraph5_aMC@NLO
 - → Pythia8 (showering)
 - → Delphes3 (detector)
- Limitations of fast simulation
 - → SM-simulation VS ATLAS one
 - → Smearing and shifts
 - → Corrected for efficiency (energy dependence)
 - → Corrected for NNLO effect in production cross section

Checks over SM-samples: ATLAS full-simulation VS MG5 fast-simulation

Uncertainties

ATLAS

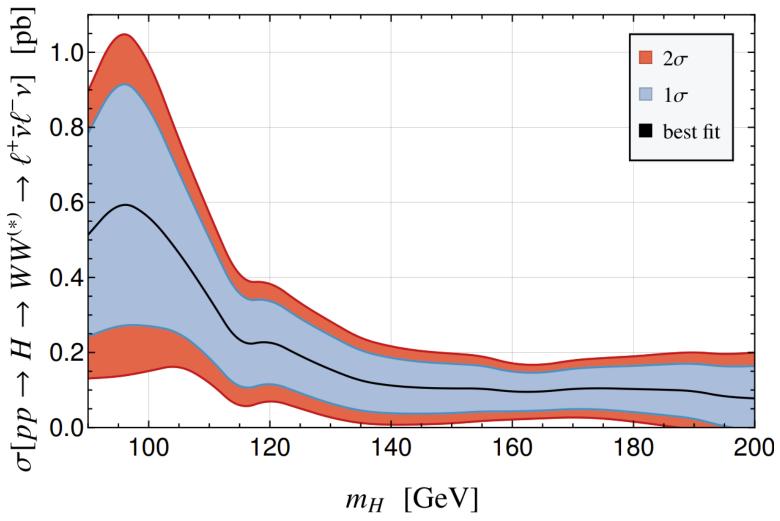
- ATLAS scaled SM theory prediction by 1.21
- Strong anti-correlations among the different background signals (including the SM Higgs)
- Mis-Id background is least correlated and the total uncertainty matches total one
 → Mis-Id uncertainty chosen as the total experimental systematic uncertainty
- Theory uncertainty (systematic):
 7% uncertainty on the SM Higgs signal


CMS

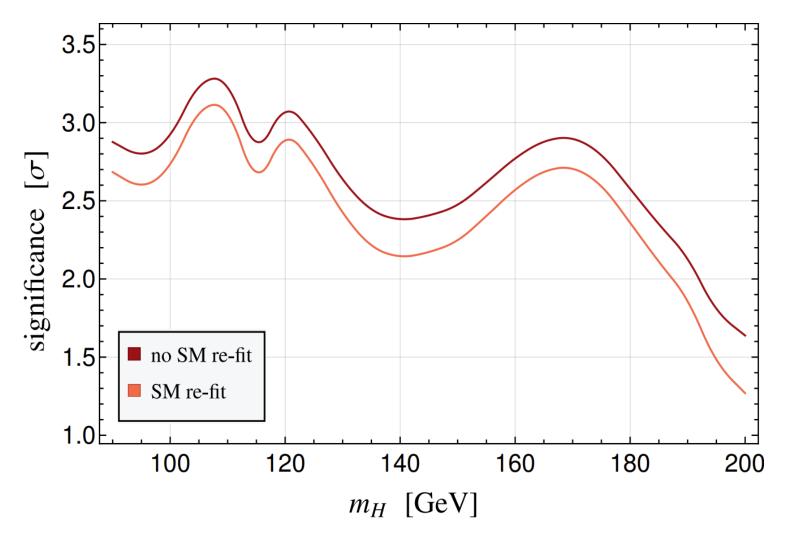
- CMS uses a combined fit to signal and background to account for systematic uncertainties
 - → re-fit background (including SM signal) when including new physics

Theory uncertainty (systematic):
 7% uncertainty on the SM Higgs signal

Systematics uncertainties correlations included


BSM signal fit with a mass of 95 GeV

CMS $p_{T2}>20\ GeV$ plot not shown due to very small efficiency


Cross section

- Observed limit is weaker than the expected one over the whole range (preference for BSM contribution)
- Allowed cross section is largest around 95 GeV

Significance

- Global significance is only below ≈ 2 σ
- Considering the existing hints for a scalar at 95 GeV i.e. removing the lookelsewhere effect
 → significance of >~ 2.5 σ.

Conclusion

Hints for new scalars decaying to WW bosons

 We re-casted CMS and ATLAS searches of a SM-scalar decaying to WW to search for new resonances

 Hints for new physic resonance in WW decays (compatible with existing one around 95 GeV and 150 GeV)

Possible Solution? (among other models currently under development)

- No signal of a resonance decaying to ZZ
- Coupling a scalar to a subgroup of a gauge group

Real scalar SU(2) triplet with Y = 0

$$\Delta = \frac{\sigma_k}{2} T_k = \tau_k T_k = \frac{1}{2} \begin{pmatrix} h_2 + v_t & \sqrt{2}T^+ \\ \sqrt{2}T^- & -h_2 - v_t \end{pmatrix} \qquad \begin{array}{c|c} SU_c(3) & SU_L(2) & U_Y(1) \\ 1 & 2 & 0 \end{array}$$

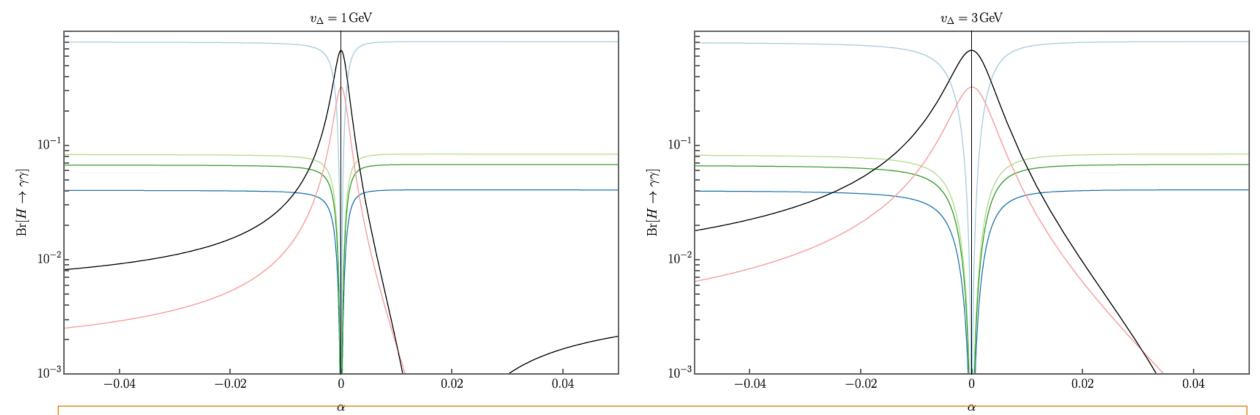
Possible Solution? (among other models currently under development)

- No direct coupling to ZZ bosons at tree level (only via mixing with SM-higgs)
- Enhancement of the W mass (CDF II)

$$\Delta = \frac{\sigma_k}{2} T_k = \tau_k T_k = \frac{1}{2} \begin{pmatrix} h_2 + v_t & \sqrt{2}T^+ \\ \sqrt{2}T^- & -h_2 - v_t \end{pmatrix}$$

$$D_{\mu}\Delta = \partial_{\mu}\Delta + ig_2[W_{\mu}^k \tau^k, \Delta]$$

$$M_Z^2 = \frac{g_2^2 + g_1^2}{4} v_{SM}^2 = M_{Z(SM)}^2$$


$$M_W^2 = \frac{g_2^2}{4} (v_{SM}^2 + 4v_t^2) = M_{W(SM)}^2 + g_2^2 v_t^2$$

Current and foreseen work:

- WZ, 3W, 4W
- Triplet (and other) models' study

Y = 0 triplet BR @95 GeV

$$-b\bar{b}-c\bar{c}-\tau\bar{\tau}-gg-\gamma\gamma-WW$$

Branching ratios of H@ 95 GeV. Dependences is on the CP-even mixing angle and the vacuum expectation value.

Statistical analyses

covariance matrix (statistic and systematic)

Significance computed via a
$$\chi^2$$
 test $\chi^2 = [N_i^{\rm data} - N_i^{\rm theory}] \sum_{ij}^{-1} [N_j^{\rm data} - N_j^{\rm theory}]$

BSM signal

$$N_i^{\text{theory}} = p_{\text{BKG}}(N_i^{\text{SM}} + N_i^{\text{BKG}}) + p_{\text{BSM}}N_i^{\text{BSM}}$$

SM signal

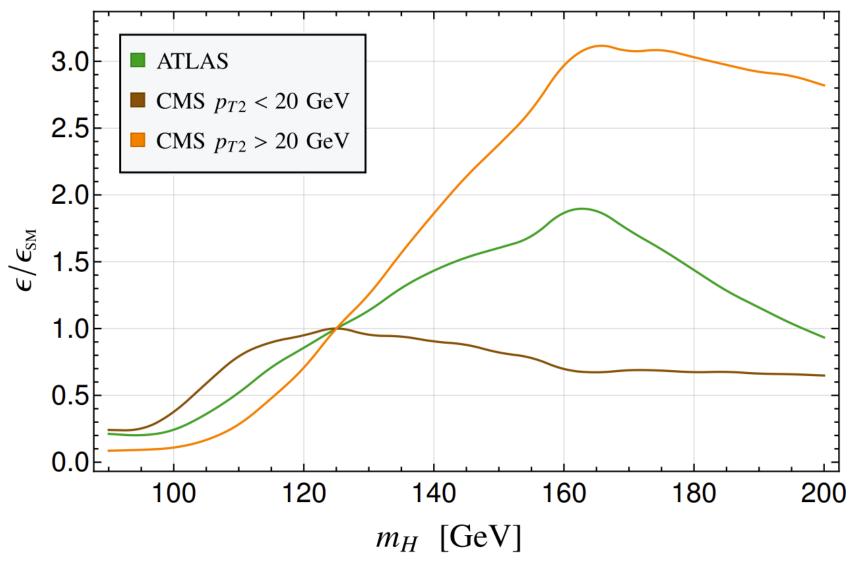
CMS re-fit the background and SM-signal: we can therefore either float this contribution or take the nominal values of the paper

$$N_i^{\text{theory}} = p_{\text{BKG}}(N_i^{\text{SM}} + N_i^{\text{BKG}})$$

$$N_i^{\text{theory}} = N_i^{\text{SM}} + N_i^{\text{BKG}}$$

 \rightarrow both cases included in the fit

BSM signal strength w.r.t. SM:
$$\mu_{\rm BSM} = \frac{\sigma[pp \to H \to WW^{(*)} \to \ell^+ \bar{\nu} \ell^- \nu]}{\sigma[pp \to h \to WW^* \to \ell^+ \bar{\nu} \ell^- \nu]}$$


BSM signal strength @ 95 and 150

$m_H = 95 \mathrm{GeV}$	$\mu_{\mathrm{BKG}}^{p_{T2}<20}$	$\mu_{\mathrm{BKG}}^{p_{T2}>20}$	$\mu_{ m BSM}$	$\chi^2_{ m BSM}$	$\chi^{2, ext{re-fit}}_{ ext{SM}}$	$\sigma^{ ext{re-fit}}$	$\chi^2_{ m SM}$	σ
ATLAS			0.7	49.0	57.7	3.0	57.7	3.0
$CMS p_{T2} < 20 GeV$	1.01		0.0	5.5	5.5	0.0	6.8	1.2
$CMS p_{T2} > 20 GeV$		1.01	-3.5	6.2	9.0	-	9.1	-
Combined Fit	1.00	1.00	0.5	65.4	72.2	2.6	73.3	2.8
$m_H = 150 \mathrm{GeV}$	$\mu_{\mathrm{BKG}}^{p_{T2}<20}$	$\mu_{\mathrm{BKG}}^{p_{T2}>20}$	$\mu_{ m BSM}$	$\chi^2_{ m BSM}$	$\chi^{2, ext{re-fit}}_{ ext{SM}}$	$\sigma^{ ext{re-fit}}$	$\chi^2_{ m SM}$	σ
ATLAS			0.1	54.5	57.7	1.8	57.7	1.8
$CMS p_{T2} < 20 GeV$	0.97		0.6	1.5	5.5	2.0	6.8	2.3
$CMS p_{T2} > 20 GeV$		0.99	0.2	8.0	9.0	1.0	9.1	1.0
Combined Fit	1.01	0.99	0.1	67.2	72.2	2.2	73.3	2.5

TABLE I. Fit results for the two cases $m_H = 95 \,\text{GeV}$ and $m_H = 150 \,\text{GeV}$, motivated by the existing hints for new scalars at the LHC. Note that the sizable value of μ_{BSM} in the CMS $p_T > 20 \,\text{GeV}$ category for the 95 GeV case is due to the very small efficiency.

Guglielmo Coloretti CHIPP-2023 16

Simulation efficiency

CHIPP-2023