The $(g-2)_{\mu}$ in the Standard Model: review of the calculation of hadronic contributions

Gilberto Colangelo

CHIPP Plenary meeting 2021 Spiez, June 10-11, 2021

Outline

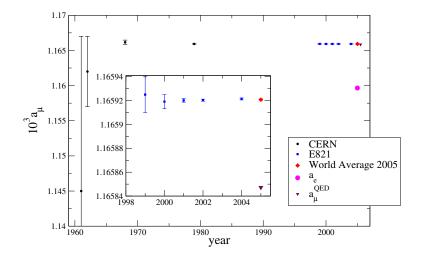
Introduction: $(g-2)_{\mu}$ in the Standard Model

Hadronic Vacuum Polarization contribution to $(g-2)_{\mu}$

Hadronic light-by-light contribution to $(g-2)_{\mu}$

Conclusions and Outlook

History of a_{μ} measurements

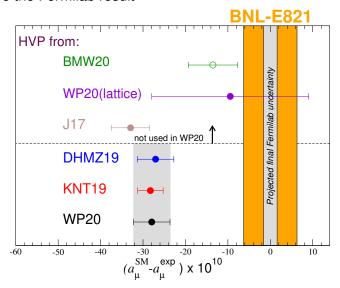


Present status of $(g-2)_{\mu}$, experiment vs SM

$$a_{\mu}(BNL) = 116\,592\,089(63) \times 10^{-11}$$
 $a_{\mu}(FNAL) = 116\,592\,040(54) \times 10^{-11}$ $a_{\mu}(Exp) = 116\,592\,061(41) \times 10^{-11}$

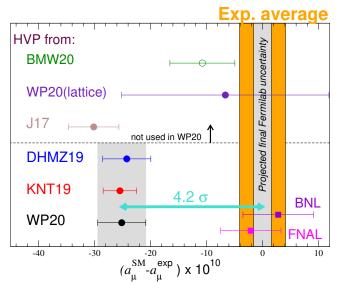
Present status of $(g-2)_{\mu}$, experiment vs SM

Before the Fermilab result



Present status of $(g-2)_{\mu}$, experiment vs SM

After the Fermilab result



Contribution	Value ×10 ¹¹
HVP LO (e^+e^-)	6931(40)
HVP NLO (e^+e^-)	-98.3(7)
HVP NNLO (e^+e^-)	12.4(1)
HVP LO (lattice, udsc)	7116(184)
HLbL (phenomenology)	92(19)
HLbL NLO (phenomenology)	2(1)
HLbL (lattice, uds)	79(35)
HLbL (phenomenology + lattice)	90(17)
QED	116 584 718.931(104)
Electroweak	153.6(1.0)
HVP (e^+e^- , LO + NLO + NNLO)	6845(40)
HLbL (phenomenology + lattice + NLO)	92(18)
Total SM Value	116 591 810(43)
Experiment	116 592 061 (41)
Difference: $\Delta a_{\mu} := a_{\mu}^{\sf exp} - a_{\mu}^{\sf SM}$	252(59)

Contribution	Value $\times 10^{11}$
HVP LO (e^+e^-)	6931(40)
HVP NLO (e^+e^-)	-98.3(7)
HVP NNLO (e^+e^-)	12.4(1)
HVP LO (lattice BMW(20), udsc)	7075(55)
HLbL (phenomenology)	92(19)
HLbL NLO (phenomenology)	2(1)
HLbL (lattice, <i>uds</i>)	79(35)
HLbL (phenomenology + lattice)	90(17)
QED	116 584 718.931(104)
Electroweak	153.6(1.0)
HVP (e^+e^- , LO + NLO + NNLO)	6845(40)
HLbL (phenomenology + lattice + NLO)	92(18)
Total SM Value	116 591 810(43)
Experiment	116 592 061 (41)
Difference: $\Delta a_{\mu} := a_{\mu}^{\sf exp} - a_{\mu}^{\sf SM}$	252(59)

White Paper:

T. Aoyama et al. Phys. Rep. 887 (2020) = WP(20)

Muon g-2 Theory Initiative

Steering Committee:

GC

Michel Davier

Simon Eidelman

Aida El-Khadra (co-chair)

Martin Hoferichter

Christoph Lehner (co-chair)

Tsutomu Mibe (J-PARC E34 experiment)

(Andreas Nyffeler until summer 2020)

Lee Roberts (Fermilab E989 experiment)

Thomas Teubner

Hartmut Wittig

White Paper:

T. Aoyama et al. Phys. Rep. 887 (2020) = WP(20)

Muon g-2 Theory Initiative Workshops:

- First plenary meeting, Q-Center (Fermilab), 3-6 June 2017
- HVP WG workshop, KEK (Japan), 12-14 February 2018
- HLbL WG workshop, U. of Connecticut, 12-14 March 2018
- Second plenary meeting, Mainz, 18-22 June 2018
- Third plenary meeting, Seattle, 9-13 September 2019
- Lattice HVP workshop, virtual, 16-20 November 2020
- Fourth plenary meeting, KEK (virtual), 28 June-02 July 2021

Theory uncertainty comes from hadronic physics

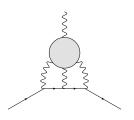
- Hadronic contributions responsible for most of the theory uncertainty
- ▶ Hadronic vacuum polarization (HVP) is $\mathcal{O}(\alpha^2)$, dominates the total uncertainty, despite being known to < 1%

- ▶ unitarity and analyticity ⇒ dispersive approach
- ▶ ⇒ direct relation to experiment: $\sigma_{tot}(e^+e^- \rightarrow hadrons)$
- ▶ e⁺e⁻ Exps: BaBar, Belle, BESIII, CMD2/3, KLOE2, SND
- alternative approach: lattice, becoming competitive

(BMW, ETMC, Fermilab, HPQCD, Mainz, MILC, RBC/UKQCD)

Theory uncertainty comes from hadronic physics

- Hadronic contributions responsible for most of the theory uncertainty
- ▶ Hadronic vacuum polarization (HVP) is $\mathcal{O}(\alpha^2)$, dominates the total uncertainty, despite being known to < 1%
- ▶ Hadronic light-by-light (HLbL) is $\mathcal{O}(\alpha^3)$, known to \sim 20%, second largest uncertainty (now subdominant)

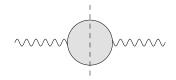


- earlier: "it cannot be expressed in terms of measurable quantities"
- ► recently: dispersive approach ⇒ data-driven, systematic treatment
- ► lattice QCD is becoming competitive

(Mainz, RBC/UKQCD)

HVP contribution: Master Formula

Unitarity relation: simple, same for all intermediate states



Im
$$\Pi(q^2) \propto \sigma(e^+e^- \to \text{hadrons}) = \sigma(e^+e^- \to \mu^+\mu^-)R(q^2)$$

Analyticity ⇒ Master formula for HVP

Bouchiat, Michel (61)

$$a_{\mu}^{
m hvp} = rac{lpha^2}{3\pi^2} \int_{s_{th}}^{\infty} rac{ds}{s} K(s) R(s)$$

K(s) known, depends on m_μ and $K(s) \sim {1 \over s}$ for large s

Comparison between DHMZ19 and KNT19

	DHMZ19	KNT19	Difference
$\pi^+\pi^-$	507.85(0.83)(3.23)(0.55)	504.23(1.90)	3.62
$\pi^{+}\pi^{-}\pi^{0}$	46.21(0.40)(1.10)(0.86)	46.63(94)	-0.42
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	13.68(0.03)(0.27)(0.14)	13.99(19)	-0.31
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	18.03(0.06)(0.48)(0.26)	18.15(74)	-0.12
$\kappa^+\kappa^-$	23.08(0.20)(0.33)(0.21)	23.00(22)	0.08
K_SK_L	12.82(0.06)(0.18)(0.15)	13.04(19)	-0.22
$\pi^0\gamma$	4.41(0.06)(0.04)(0.07)	4.58(10)	-0.17
Sum of the above	626.08(0.95)(3.48)(1.47)	623.62(2.27)	2.46
[1.8, 3.7] GeV (without cc)	33.45(71)	34.45(56)	-1.00
$J/\psi, \psi(2S)$	7.76(12)	7.84(19)	-0.08
$[3.7, \infty)\mathrm{GeV}$	17.15(31)	16.95(19)	0.20
Total $a_{\mu}^{ ext{HVP, LO}}$	694.0(1.0)(3.5)(1.6)(0.1) $_{\psi}$ (0.7) _{DV+QCD}	692.8(2.4)	1.2

2π : comparison with the dispersive approach

The 2π channel can itself be described dispersively \Rightarrow more constrained theoretically

Ananthanarayan, Caprini, Das (19), GC, Hoferichter, Stoffer (18)

Energy range	ACD18	CHS18	DHMZ19	KNT19
$\begin{array}{l} \leq 0.6 \text{GeV} \\ \leq 0.7 \text{GeV} \\ \leq 0.8 \text{GeV} \\ \leq 0.8 \text{GeV} \\ \leq 0.9 \text{GeV} \\ \leq 1.0 \text{GeV} \end{array}$		110.1(9) 214.8(1.7) 413.2(2.3) 479.8(2.6) 495.0(2.6)	110.4(4)(5) 214.7(0.8)(1.1) 414.4(1.5)(2.3) 481.9(1.8)(2.9) 497.4(1.8)(3.1)	108.7(9) 213.1(1.2) 412.0(1.7) 478.5(1.8) 493.8(1.9)
[0.6, 0.7] GeV [0.7, 0.8] GeV [0.8, 0.9] GeV [0.9, 1.0] GeV		104.7(7) 198.3(9) 66.6(4) 15.3(1)	104.2(5)(5) 199.8(0.9)(1.2) 67.5(4)(6) 15.5(1)(2)	104.4(5) 198.9(7) 66.6(3) 15.3(1)
	132.9(8)	132.8(1.1) 369.6(1.7) 490.7(2.6)	132.9(5)(6) 371.5(1.5)(2.3) 493.1(1.8)(3.1)	131.2(1.0) 369.8(1.3) 489.5(1.9)

Combination method and final result

Complete analyses DHMZ19 and KNT19, as well as CHS19 (2π) and HHK19 (3π) , have been so combined:

- central values are obtained by simple averages (for each channel and mass range)
- the largest experimental and systematic uncertainty of DHMZ and KNT is taken
- ▶ 1/2 difference DHMZ−KNT (or BABAR−KLOE in the 2π channel, if larger) is added to the uncertainty

Final result:

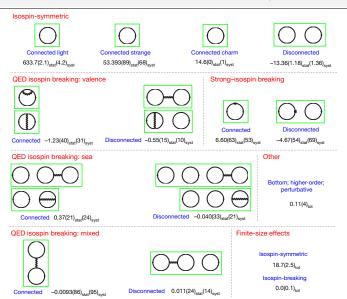
$$a_{\mu}^{\text{HVP, LO}} = 693.1(2.8)_{\text{exp}}(2.8)_{\text{sys}}(0.7)_{\text{DV+QCD}} \times 10^{-10}$$

= $693.1(4.0) \times 10^{-10}$

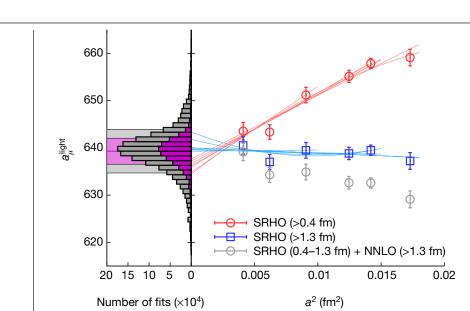
State-of-the-art lattice calculation of $a_{\mu}^{HVP, LO}$ based on

- current-current correlator, summed over all distances, integrated in time with appropriate kernel function
- using staggered fermions on an $L \sim 6$ fm lattice ($L \sim 11$ fm used for finite volume corrections)
- at (and around) physical quark masses
- including isospin-breaking effects

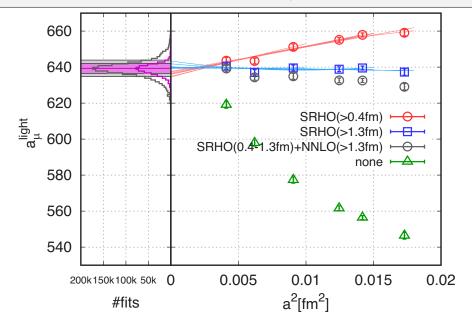
Borsanyi et al. Nature 2021



Borsanyi et al. Nature 2021

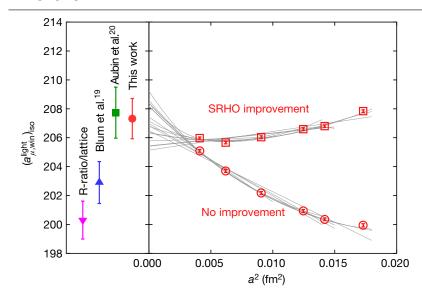


Borsanyi et al. Nature 2021



Borsanyi et al. Nature 2021

Article



Consequences of the BMW result

A shift in the value of $a_{\mu}^{\text{HVP, LO}}$ would have consequences:

- lacktriangledown $\Delta a_{\mu}^{\mathsf{HVP, LO}} \quad \Leftrightarrow \quad \Delta \sigma(e^+e^-
 ightarrow \mathsf{hadrons})$
- ► $\Delta \alpha_{\rm had}(M_Z^2)$ is determined by an integral of the same $\sigma(e^+e^- \to {\rm hadrons})$ (more weight at high energy)
- ► changing $a_{\mu}^{\text{HVP, LO}}$ necessarily implies a shift in $\Delta \alpha_{\text{had}}(M_Z^2)$: size depends on the energy range of $\Delta \sigma(e^+e^- \to \text{hadrons})$
- a shift in $\Delta \alpha_{had}(M_Z^2)$ has an impact on the EW-fit
- ▶ to save the EW-fit $\Delta\sigma(e^+e^- \to {\rm hadrons})$ must occur below \sim 1 (max 2) GeV

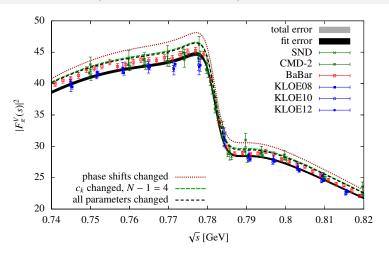
Crivellin, Hoferichter, Manzari, Montull (20)/Keshavarzi, Marciano, Passera, Sirlin (20)/Malaescu, Schott (20)

or the need for BSM physics would be moved elsewhere

Changes in $\sigma(e^+e^- \to \text{hadrons})$ below 1 GeV?

- ▶ Below 1 2 GeV only one significant channel: $\pi^+\pi^-$
- Strongly constrained by analyticity and unitarity $(F_{\pi}^{V}(s))$
- $F_{\pi}^{V}(s)$ parametrization which satisfies these \Rightarrow small number of parameters GC, Hoferichter, Stoffer (18)
- $ightharpoonup \Delta a_{\mu}^{
 m HVP,\,LO} \Leftrightarrow
 m shifts \ in \ these \ parameters \ analysis \ of \ the \ corresponding \ scenarios \ GC, \ Hoferichter, \ Stoffer (21)$

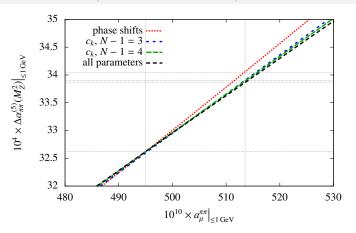
Changes in $\sigma(e^+e^- \rightarrow \text{hadrons})$ below 1 GeV?



GC, Hoferichter, Stoffer (21)

Tension [BMW20 vs e^+e^- data] stronger for KLOE than for BABAR

Changes in $\sigma(e^+e^- \to \text{hadrons})$ below 1 GeV?



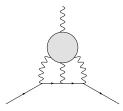
GC, Hoferichter, Stoffer (21)

$$10^4 \Delta \alpha_{\rm had}^{(5)}(\textit{M}_Z^2) = \left\{ \begin{array}{ll} 272.2(4.1) & {\rm EW~fit} \\ 276.1(1.1) & \sigma_{\rm had}(\textit{s}) \end{array} \right.$$

Calculating the HLbL contribution

Calculating the HLbL contribution is complicated

4-point function of em currents in QCD



a data-driven approach like for HVP seemed hopeless "it cannot be expressed in terms of measurable quantities" but has been recently developed and used

GC, Hoferichter, Procura, Stoffer=CHPS (14,15,17), Hoferichter, Hoid, Kubis, Leupold, Schneider (18)

lattice QCD is an alternative and is making fast progress

HLbL contribution: Master Formula

$$a_{\mu}^{\mathrm{HLbL}} = \frac{2\alpha^{3}}{48\pi^{2}} \int_{0}^{\infty} dQ_{1} \int_{0}^{\infty} dQ_{2} \int_{-1}^{1} \sqrt{1-\tau^{2}} \sum_{i=1}^{12} T_{i}(Q_{1}, Q_{2}, \tau) \bar{\Pi}_{i}(Q_{1}, Q_{2}, \tau)$$

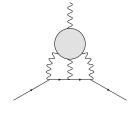
 Q_i^μ are the Wick-rotated four-momenta and τ the four-dimensional angle between Euclidean momenta:

$$Q_1 \cdot Q_2 = |Q_1||Q_2|\tau$$

The integration variables $Q_1 := |Q_1|, Q_2 := |Q_2|$.

CHPS (15)

- $ightharpoonup T_i$: known kernel functions



Improvements obtained with the dispersive approach

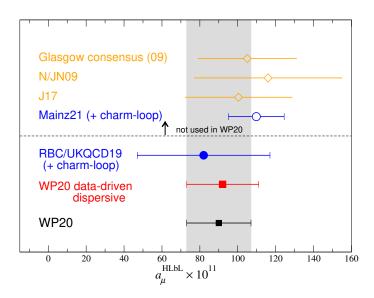
Contribution	PdRV(09) Glasgow consensus	N/JN(09)	J(17)	WP(20)
π^0 , η , η' -poles π , K -loops/boxes S -wave $\pi\pi$ rescattering	114(13) -19(19) -7(7)	99(16) -19(13) -7(2)	95.45(12.40) -20(5) -5.98(1.20)	93.8(4.0) -16.4(2) -8(1)
subtotal	88(24)	73(21)	69.5(13.4)	69.4(4.1)
scalars tensors axial vectors u, d, s-loops / short-distance	- 15(10) -	22(5) 21(3)	7.55(2.71) 20(4)	} - 1(3) 6(6) 15(10)
c-loop	2.3	_	2.3(2)	3(1)
total	105(26)	116(39)	100.4(28.2)	92(19)

significant reduction of uncertainties in the first three rows: low-energy region well constrained by a dispersive approach

CHPS (17), Masjuan, Sánchez-Puertas (17) Hoferichter, Hoid, Kubis, Leupold, Schneider (18)

► 1 – 2 GeV and asymptotic region (short distance constraints) have been improved, but still work in progress (see WP(20))

Situation for HLbL



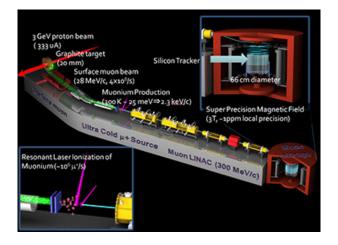
Conclusions

- The WP provides the current status of the SM evaluation of $(g-2)_{\mu}$: 4.2 σ discrepancy with experiment (w/ FNAL)
- Evaluation of the HVP contribution based on the dispersive approach: 0.6% error ⇒ dominates the theory uncertainty
- Recent lattice calculation [BMW(20)] has reached a similar precision but differs from the dispersive one (=from e⁺e[−] data).
 If confirmed ⇒ discrepancy with experiment \(\subseteq \text{below 2} \sigma\$
- Evaluation of the HLbL contribution based on the dispersive approach: 20% accuracy. Two recent lattice calculations [RBC/UKQCD(20), Mainz(21)] agree with it

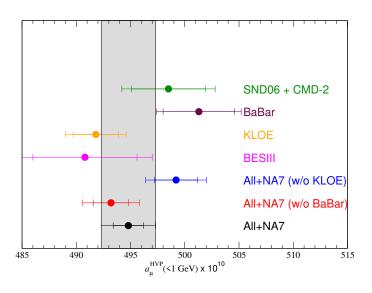
Outlook

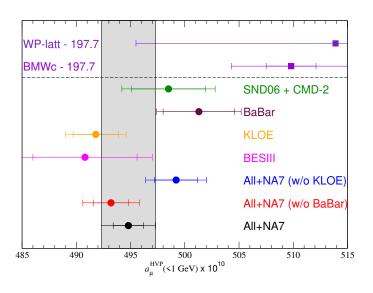
- The Fermilab experiment aims to reduce the BNL uncertainty by a factor four \Rightarrow potential 7σ discrepancy
- Improvements on the theory side:
 - ► HVP data-driven:
 Other e⁺e⁻ experiments are available or forthcoming:
 SND, BESIII, CMD3, BaBar ⇒ Further error reductions
 - HVP lattice:
 BMW result must be confirmed (or refuted) by others.
 Difference to data-driven evaluation must be understood
 - ► HLbL data-driven: goal of \sim 10% uncertainty within reach
 - ► HLbL lattice: RBC/UKQCD ⇒ similar precision as Mainz. Good agreement with data-driven evaluation.

Future: Muon g - 2/EDM experiment @ J-PARC

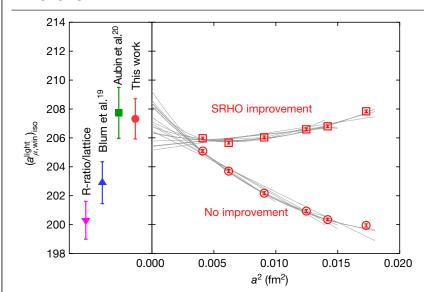


Backup Slides

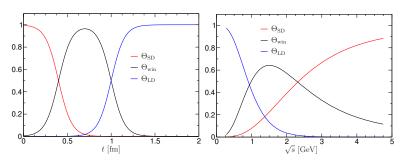


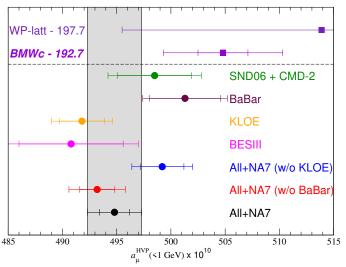


Article



Weight functions for the window quantities





 $a_{\mu}^{\rm win}$ suggests that $\sim 5 \times 10^{-10}$ must come from above 1 GeV

Short-distance contraints

Two different kinematic configurations for large Q_i^2 :

1. All momenta large

Melnikov-Vainshtein (04), Bijnens et al (19)

$$\lim_{Q \to \infty} Q^4 \, \bar{\Pi}_1(Q^2, Q^2, Q^2) = -\frac{4}{9\pi^2}.$$

2. $Q^2 \equiv Q_1^2 \sim Q_2^2 \gg Q_3^2$:

Melnikov-Vainshtein (04)

$$\lim_{Q_3 \to \infty} \lim_{Q \to \infty} Q^2 Q_3^2 \, \bar{\Pi}_1(Q^2, Q^2, Q_3^2) = -\frac{2}{3\pi^2}$$

In fact, in the chiral (and large- N_c) limit

$$\lim_{Q o \infty} Q^2 \, \bar{\Pi}_1(Q^2,Q^2,Q_3^2) = -rac{2}{3\pi^2 Q_3^2}$$

the Q_3^2 dependence is known exactly

No individual contribution can satisfy these constraints

Approaches to satisfying the SDC

SDCs have been satisfied with three different approaches:

1. pion-pole modification

Melnikhov-Vainshtein (04)

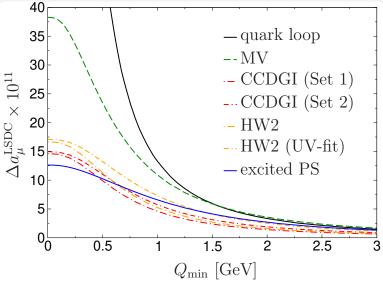
- 2. Regge model of pseudoscalars
- GC, Hagelstein, Hoferichter, Laub, Stoffer (19)
- 3. Holographic QCD: axial resonances

Leutgeb-Rebhan, Cappiello et al. (20)

	MV model	HW2/CCDGI (set 2)	Regge model
π^{0}/a_{1}	17	(4 - 5)	2.7(1.3)
η/f_1	10	(4-5)	3.4(1.3)
η'/f_1^*	12	(6-8)	6.5(2.0)
Total	38	(9.6 - 13)	12.6(4.1)

- ▶ SDCs satisfied with pseudoscalars or axials lead to similar effects on a_{μ}
- a fourth approach based on interpolants confirms the estimate of HW2/CCDGI and Regge model
 Lüdtke, Procura (20)

Approaches to satisfying the SDC



WP(20)