Implications of LFU anomalies for high-energy physics

Gino Isidori

[University of Zürich]

- ► Introduction [LFU and accidental symmetries]
- A closer look to B-physics data
- ► EFT and simplified models
- ► Speculations on UV completions
- **▶** Conclusions

What is Lepton Flavor Universality and why we care about it?

LFU is an <u>accidental approximate symmetry</u> of the SM Lagrangian. (exact SM global symmetry in the limit where we neglect lepton Yukawa's):

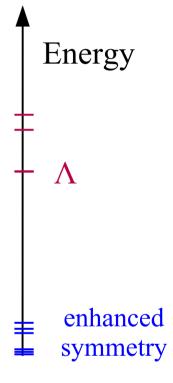
$$\mathcal{L}_{SM} = \mathcal{L}_{gauge} + \mathcal{L}_{Higgs}$$
 \longrightarrow $y_1 = 0$ \longrightarrow 3×3 (unitary) transformations of lepton fields in flavor space

LFU is <u>badly broken</u> in the Yukawa sector: $y_e \sim 3 \times 10^{-6}$, $y_u \sim 3 \times 10^{-4}$, $y_\tau \sim 10^{-2}$

But all the lepton Yukawa couplings are small compared to SM gauge couplings, giving rise to the (*approximate*) universality of decay amplitudes which differ only by the different lepton species involved

$$\mathscr{L}_{\text{SM-EFT}} = \mathscr{L}_{\text{gauge}} + \mathscr{L}_{\text{Higgs}} + \sum_{d,i} \frac{c_i^{[d]}}{\Lambda^{d-4}} O_i^{d \ge 5}$$

Accidental symmetries are excellent probes of high-energy dynamics,


as we know from well-known examples in the past:

Eg: Low-energy theory: QED + QCD

Accidental symm.: Flavor [$U(1)_n$]

Violated by: Weak interactions \rightarrow $G_F \sim (250 \text{ GeV})^{-2}$

Violations of accidental symmetries

$$\mathscr{L}_{\text{SM-EFT}} = \mathscr{L}_{\text{gauge}} + \mathscr{L}_{\text{Higgs}} + \sum_{d,i} \frac{c_i^{d}}{\Lambda^{d-4}} O_i^{d \ge 5}$$

Accidental symmetries are excellent probes of high-energy dynamics,

as we know from well-known examples in the past:

Eg: Low-energy theory: QED + QCD

Accidental symm.: Flavor [$U(1)_{n_c}$]

Violated by: Weak interactions \rightarrow $G_F \sim (250 \text{ GeV})^{-2}$

Eg: Low-energy theory: SM, 2 generations

Accidental symm.: CP

Violated by: "Super-weak" interactions

Violations of accidental symmetries

enhanced symmetry

Energy

(single evidence of the violation in K- \overline{K} mixing for long time)

$$\mathscr{L}_{\text{SM-EFT}} = \mathscr{L}_{\text{gauge}} + \mathscr{L}_{\text{Higgs}} + \sum_{d,i} \frac{c_i^{d}}{\Lambda^{d-4}} O_i^{d \ge 5}$$

Accidental symmetries are excellent probes of high-energy dynamics,

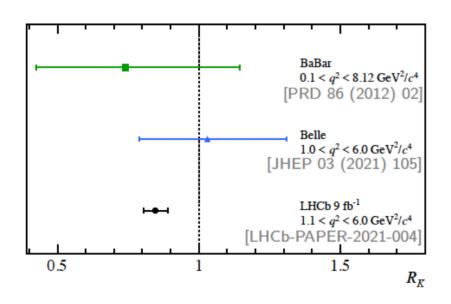
as we know from well-known examples in the past:

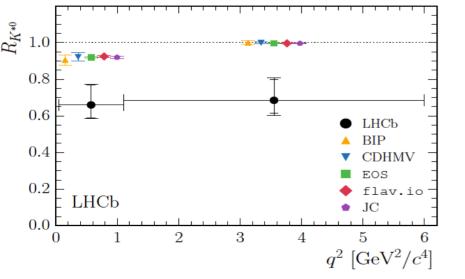
Violations of accidental symmetries

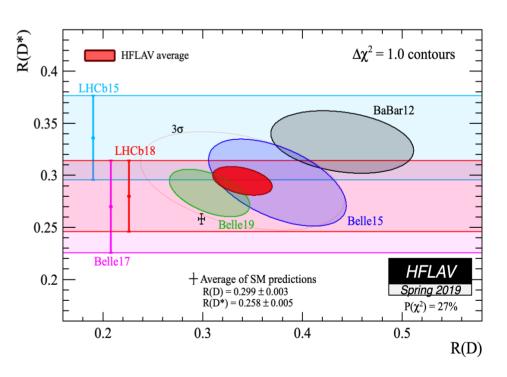
enhanced symmetry

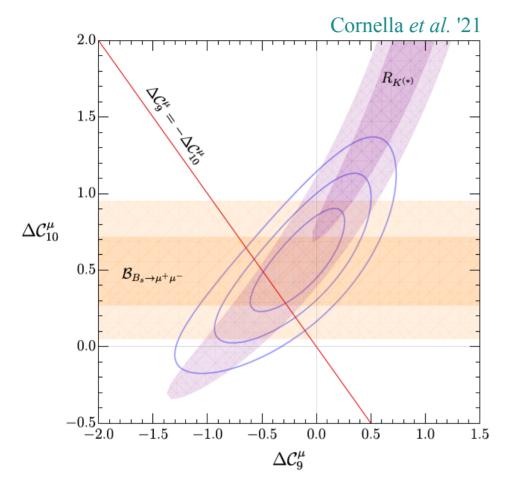
Energy

Accidental symm.: Flavor [$U(1)_n$]


Violated by: Weak interactions \rightarrow $G_F \sim (250 \text{ GeV})^{-2}$


Eg: Low-energy theory: SM, 2 generations


Accidental symm.: CP

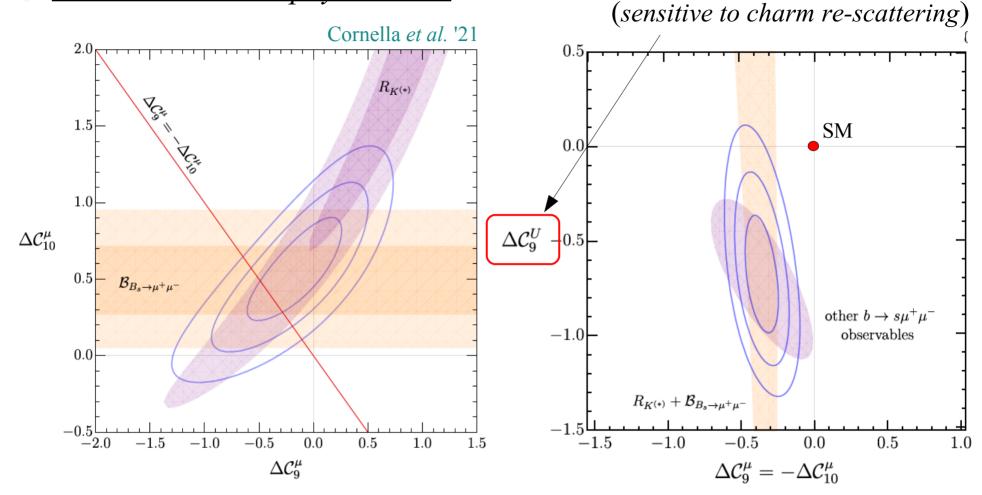

Violated by: "Super-weak" interactions $\rightarrow \frac{(G_F m_t V_{ts} V_{td})^2}{4\pi^2} \sim (10^4 \text{ TeV})^{-2}$

(single evidence of the violation in K- \overline{K} mixing for long time)

• b \rightarrow s l^+l^- (neutral currents)

FCNC operators:

$$\mathcal{O}_{10}^{\ell} = (\bar{s}_L \gamma_{\mu} b_L)(\bar{\ell} \gamma^{\mu} \gamma_5 \ell)$$
$$\mathcal{O}_{9}^{\ell} = (\bar{s}_L \gamma_{\mu} b_L)(\bar{\ell} \gamma^{\mu} \ell)$$

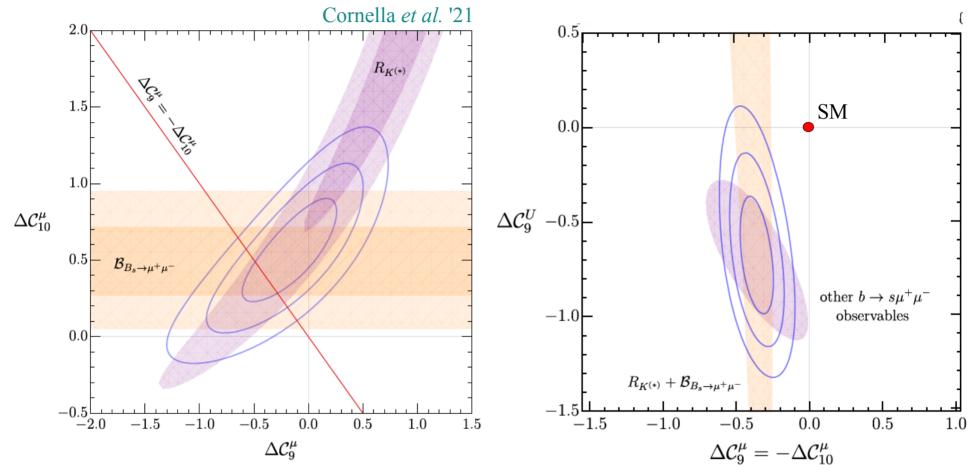

$$\Delta C_i^{\mu} = C_i^{\mu} - C_i^{e}$$

Conservative fit using "clean observables" only" [= R_K , R_{K^*} , $R_S \rightarrow \mu\mu$]

significance of NP hypothesis $\Delta C_0^{\mu} = -\Delta C_{10}^{\mu}$ vs. SM

Lepton-universal shift to C_o

A closer look to B-physics data


Conservative fit using "clean obs." only [$\Delta C_i^{\mu} = C_i^{\mu} - C_i^{e}$]:

4.6σ

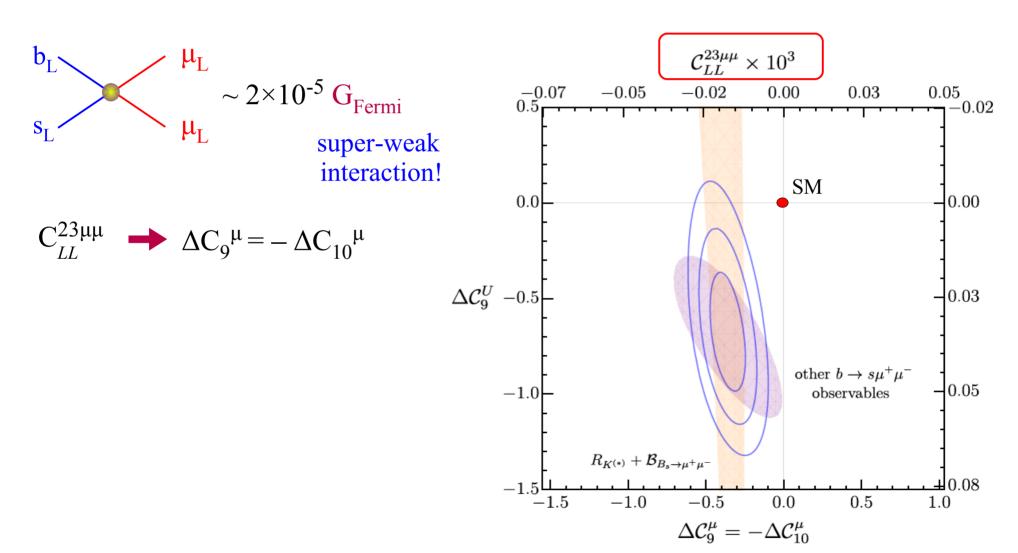
significance of NP hypothesis $\Delta C_0^{\mu} = -\Delta C_{10}^{\mu}$ vs. SM

with current best estimate of charm contributions

Alguero *et al.* '19 Ciuchini *et al.* '20 Li-Sheng Geng *et al.* '21 Altmanshofer & Stangl '21

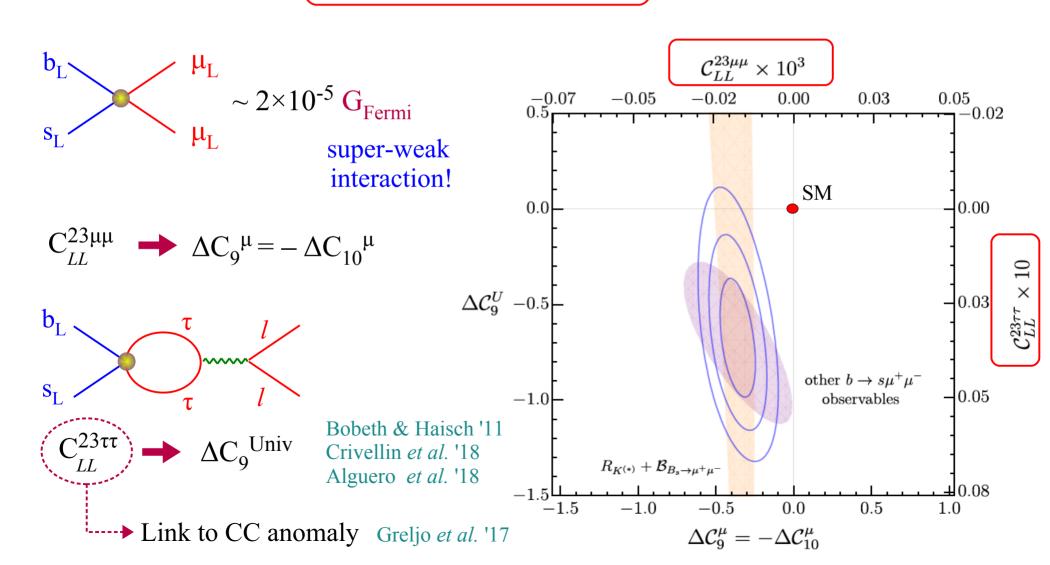
Conservative fit using "clean obs." only [$\Delta C_i^{\mu} = C_i^{\mu} - C_i^{e}$]:

significance of NP hypothesis $\Delta C_9^{\mu} = -\Delta C_{10}^{\mu}$ vs. SM

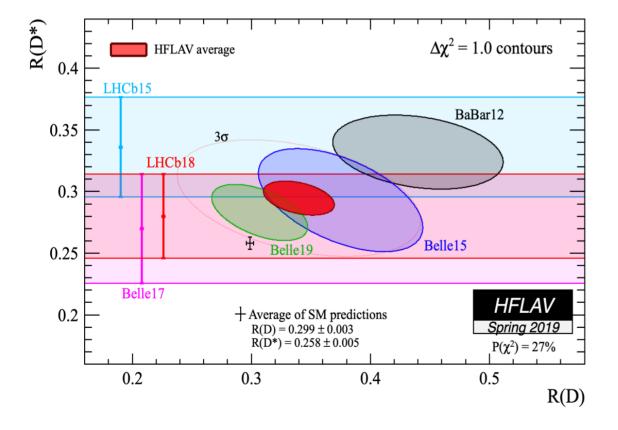

> 50 with current best estimate of charm contributions

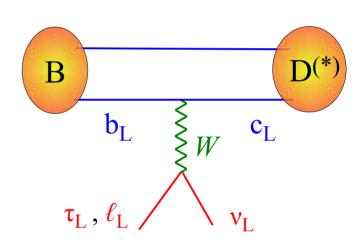
Alguero *et al.* '19 Ciuchini *et al.* '20 Li-Sheng Geng *et al.* '21 Altmanshofer & Stangl '21

3.95 <u>global significance</u> of NP (most conservative estimate) Lancierini, GI, Owen, Serra, '21

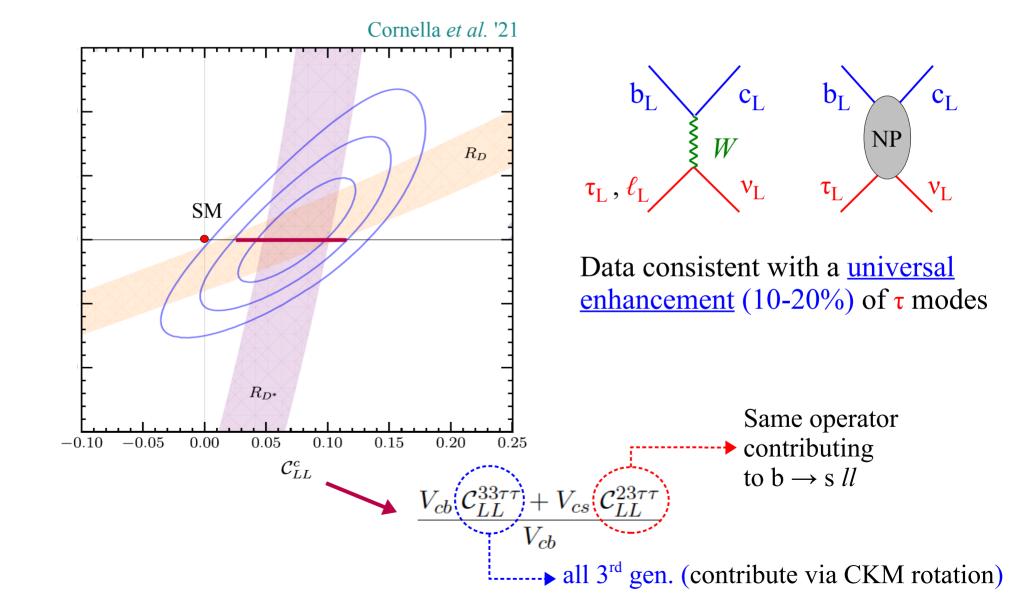

Data point to (short-distance) NP effects in operators of the type

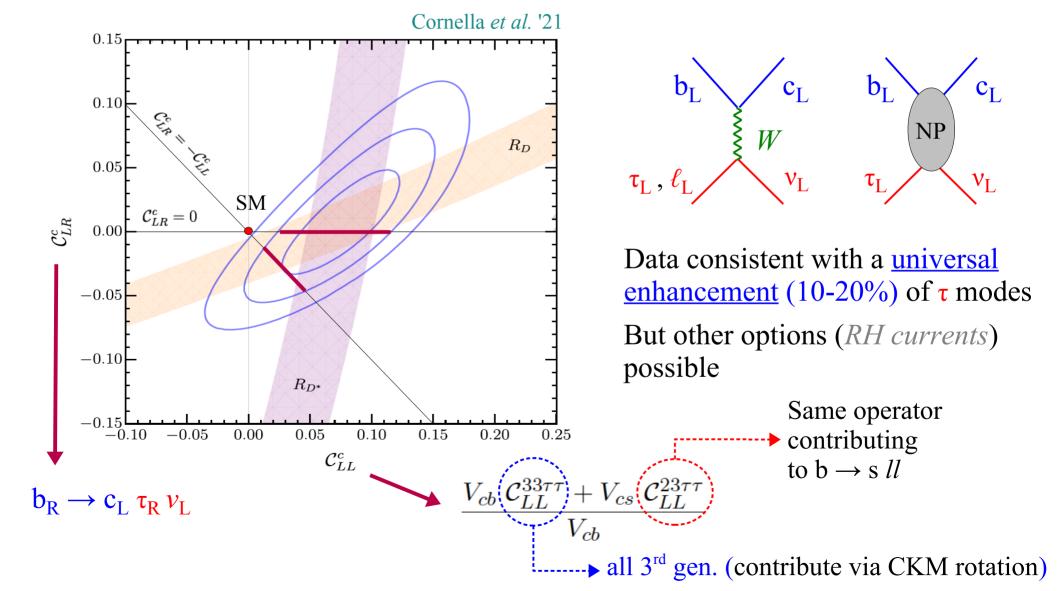
$$\mathcal{O}_{LL}^{ij\alpha\beta} = (\bar{q}_L^i \gamma_\mu \ell_L^\alpha)(\bar{\ell}_L^\beta \gamma_\mu q_L^j)$$


Data point to (short-distance) NP effects in operators of the type

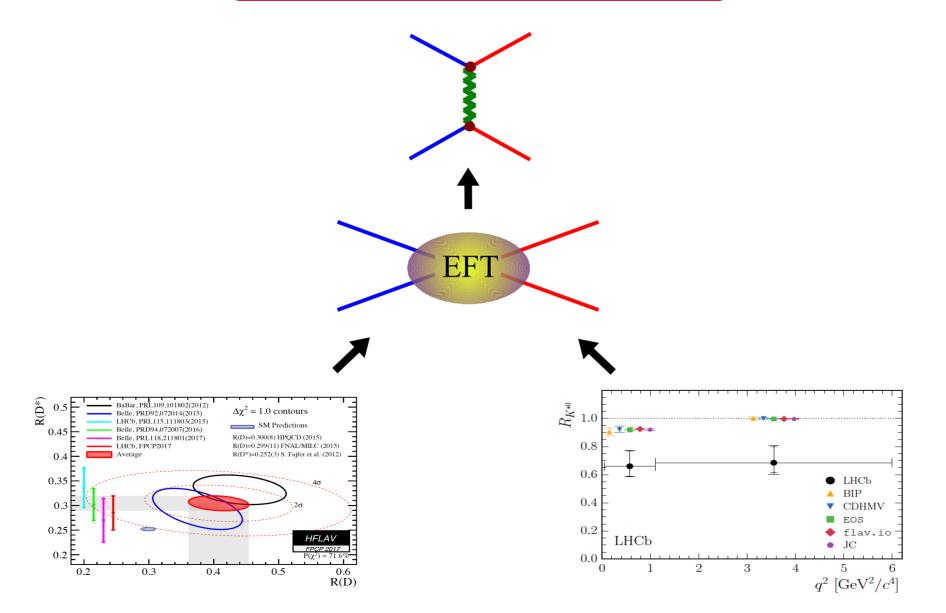

$$\mathcal{O}_{LL}^{ij\alpha\beta} = (\bar{q}_L^i \gamma_\mu \ell_L^\alpha)(\bar{\ell}_L^\beta \gamma_\mu q_L^j)$$

• b \rightarrow c *lv* (charged currents): τ vs. light leptons (μ , e)

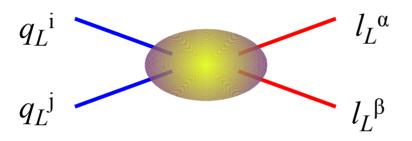

$$R(X) = \frac{\Gamma(B \to X \tau \bar{\nu})}{\Gamma(B \to X \ell \bar{\nu})}$$
 $X = D \text{ or } D^*$



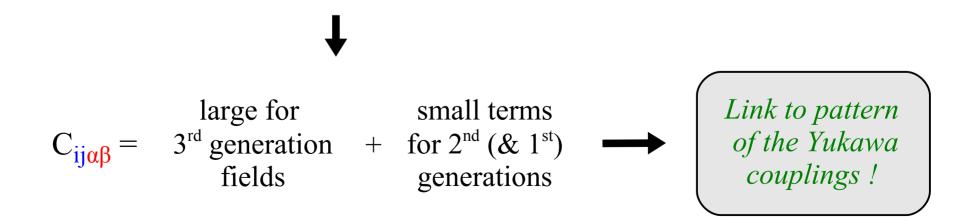
- Consistent results by three different exps. $\sim 3.1\sigma$ excess over SM (*D* and *D** combined)
- SM predictions quite "clean": hadronic uncertainties cancel (*to large extent*) in the ratios


• b \rightarrow c lv (charged currents): τ vs. light leptons (μ , e)

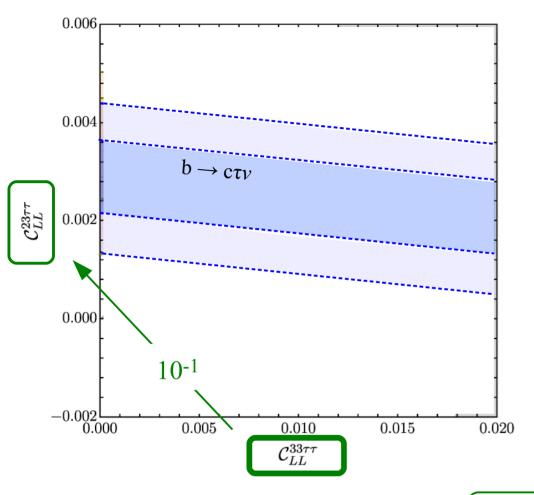
• b \rightarrow c lv (charged currents): τ vs. light leptons (μ , e)



From EFT to simplified models


EFT considerations

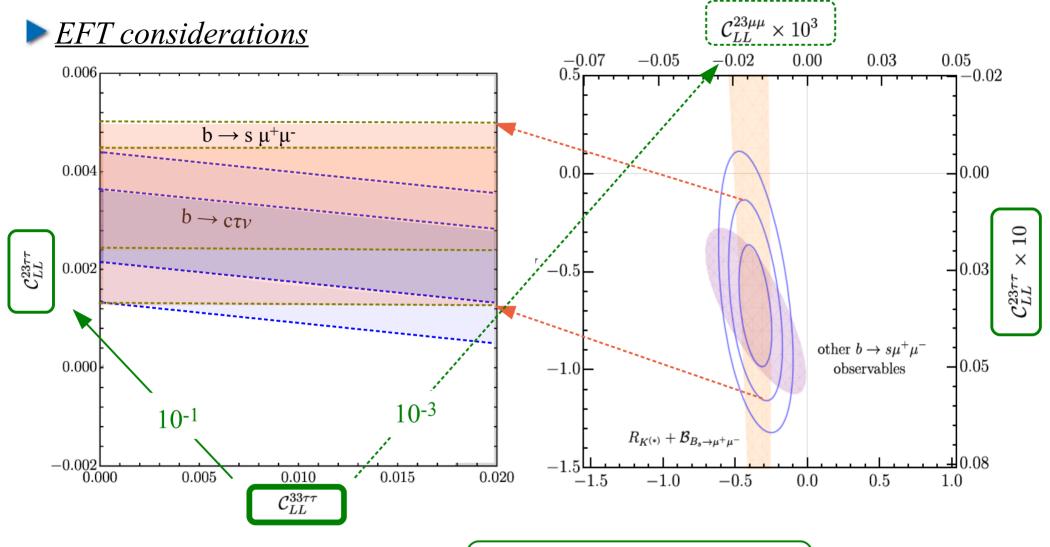
- Anomalies are seen only in semi-leptonic (quark×lepton) operators
- We definitely need non-vanishing <u>left-handed</u> current-current operators although other contributions are also possible



Bhattacharya *et al.* '14 Alonso, Grinstein, Camalich '15 Greljo, GI, Marzocca '15 (+many others...)

- Large coupling [competing with SM tree-level] in $bc \rightarrow l_3 v_3$ [R_D, R_{D*}]
- Small coupling [competing with SM loop-level] in bs $\rightarrow l_2 l_2$ [R_K, R_{K*}, ...]

EFT considerations

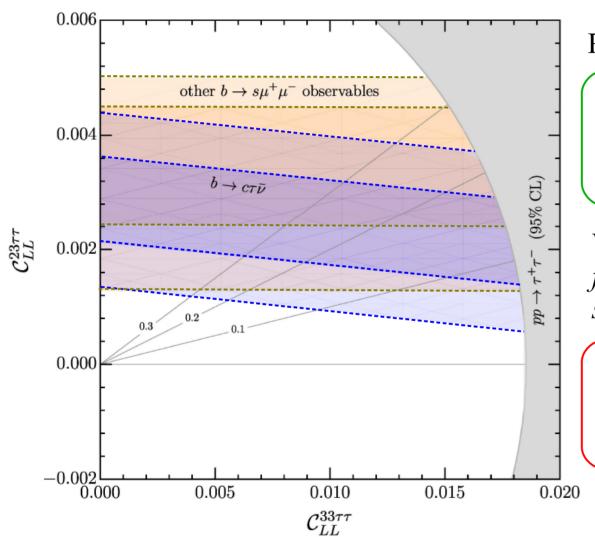

charged-currents only:

$$\underbrace{V_{cb} \left(\mathcal{C}_{LL}^{33\tau\tau}\right) + V_{cs} \left(\mathcal{C}_{LL}^{23\tau\tau}\right)}_{V_{cb}}$$

Pattern emerging from data:

$$\mathcal{O}_{LL}^{ij\alpha\beta} = (\bar{q}_L^i \gamma_\mu \ell_L^\alpha)(\bar{\ell}_L^\beta \gamma_\mu q_L^j)$$

∨ O(10⁻¹) suppress. for each 2nd gen. q_L or l_L [recall $|V_{ts}| \sim 0.4 \times 10^{-1}$]


Pattern emerging from data:

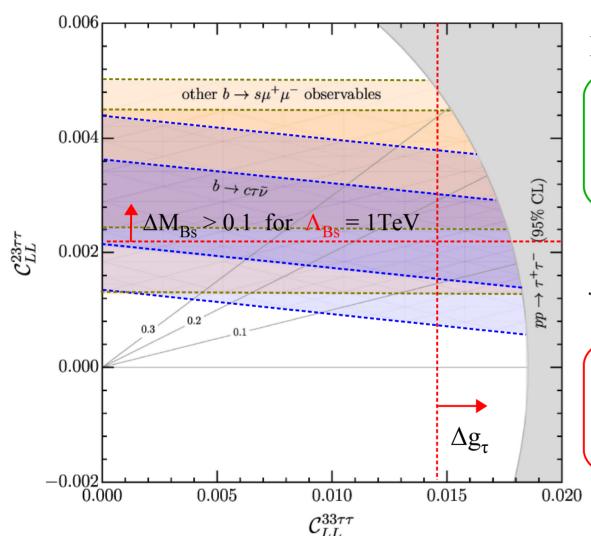
$$\mathcal{O}_{LL}^{ij\alpha\beta} = (\bar{q}_L^i \gamma_\mu \ell_L^\alpha)(\bar{\ell}_L^\beta \gamma_\mu q_L^j)$$

- **∨** O(10⁻¹) suppress. for each 2nd gen. q_L or l_L [recall $|V_{ts}| \sim 0.4 \times 10^{-1}$]
- ▼ Nice consistency among the 2 sets of anomalies

EFT considerations

$$\mathcal{O}_{LL}^{ij\alpha\beta} = (\bar{q}_L^i \gamma_\mu \ell_L^\alpha)(\bar{\ell}_L^\beta \gamma_\mu q_L^j) = \frac{1}{2} \left[\mathcal{O}_{\ell q}^{(1)} + \mathcal{O}_{\ell q}^{(3)} \right]^{ij\alpha\beta}$$

Pattern emerging from data:

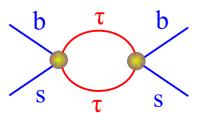

- $ightharpoonup O(10^{-1})$ for each $2^{\rm nd}$ gen. q_L or l_L
- ✓ Nice consistency among the two sets of anomalies

What we do <u>not</u> see (seem to call for an additional ~ loop suppression):

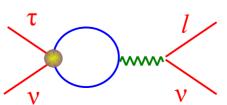
- ***** Four-quarks ($\Delta F=2$)
- ***** Four-leptons $(\tau \rightarrow \mu \nu \nu)$
- * Semi-leptonic $O^{(1-3)}$ (b \rightarrow svv)

EFT considerations

$$\mathcal{O}_{LL}^{ij\alpha\beta} = (\bar{q}_L^i \gamma_\mu \ell_L^\alpha)(\bar{\ell}_L^\beta \gamma_\mu q_L^j) = \frac{1}{2} \left[\mathcal{O}_{\ell q}^{(1)} + \mathcal{O}_{\ell q}^{(3)} \right]^{ij\alpha\beta}$$

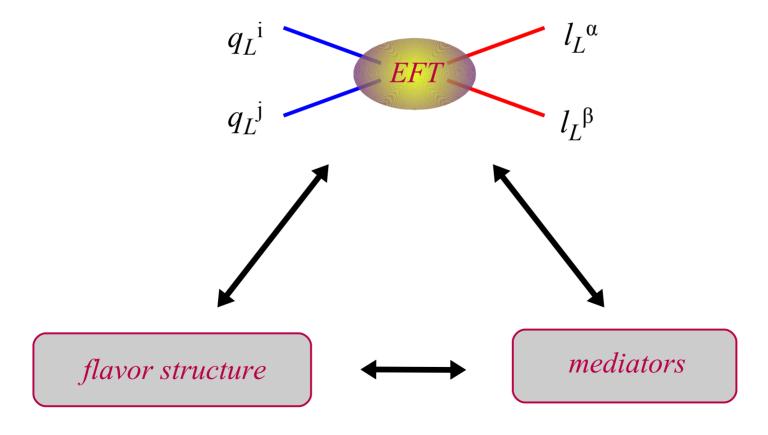


Pattern emerging from data:

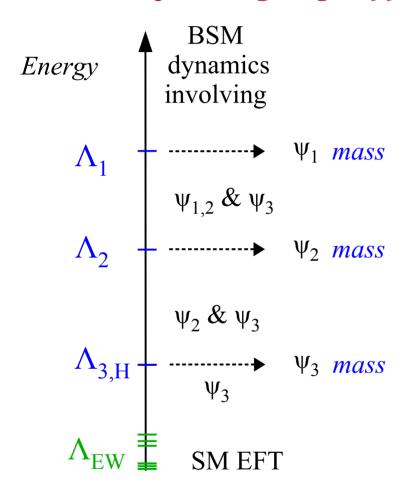

- $ightharpoonup O(10^{-1})$ for each 2^{nd} gen. q_L or l_L
- ✓ Nice consistency among the two sets of anomalies

What we do <u>not</u> see (*seem to call for an additional* ~ *loop suppression*):

- ***** Four-quarks ($\Delta F=2$)
- ***** Four-leptons $(\tau \rightarrow \mu \nu \nu)$
- * Semi-leptonic $O^{(1-3)}$ (b \rightarrow svv)


 $\Delta M_{\rm Bs} \sim (C^{23\tau\tau})^2 \Lambda_{\rm Bs}^2$

 $\Delta g_{\tau} \sim (C^{33\tau\tau})\log(\Lambda/m_{t})$

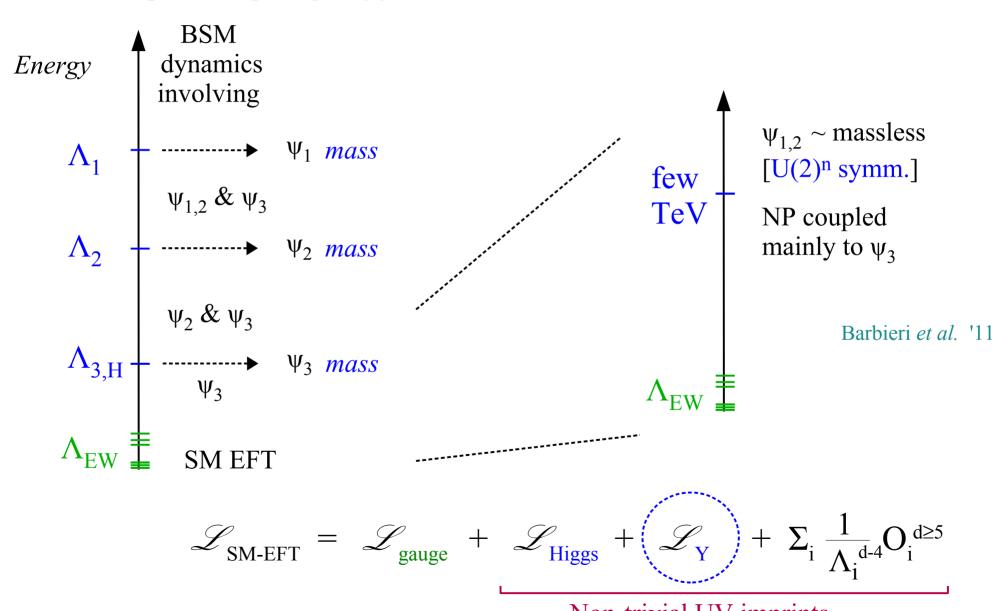

From EFT to simplified models

To move from the EFT toward more complete/ambitious models, we need to address two general aspects: the *flavor structure* of the underlying theory, and the nature of the possible *mediators*

From EFT to simplified models [the flavor structure]

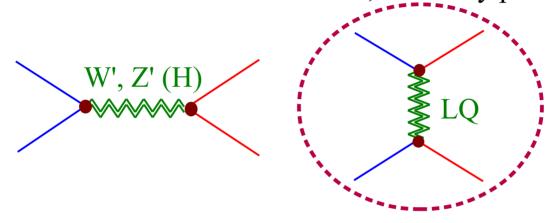
Multi-scale picture @ origin of flavor:

Barbieri '21
Allwicher, GI, Thomsen '20
:
Bordone *et al.* '17
Panico & Pomarol '16
:
Dvali & Shifman '00

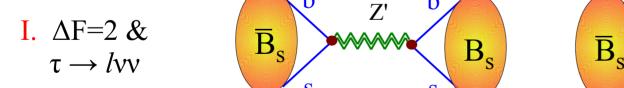

Main idea:

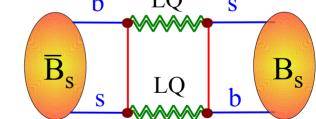
- Flavor non-universal interactions already at the TeV scale:
- 1st & 2nd gen. have small masses because they are coupled to NP at heavier scales

3 gen. = "identical copies" up to high energies


From EFT to simplified models [the flavor structure]

Multi-scale picture @ origin of flavor:




Non-trivial UV imprints

Which mediators can generate the effective operators required for by the EFT fit? If we restrict the attention to tree-level mediators, not many possibilities...

LQ (both scalar and vectors) have two general strong advantages with respect to the other mediators:

searches:

3rd gen. LQ are also in better shape as far as direct searches II. Direct are concerned (*contrary to Z'...*).

Leptoquarks suffered of an (*undeserved*) "bad reputation" for two main reasons:

- Could mediate proton decay → not a general feature of the LQ: it depends on the model...!
 [e.g. not the case in the Pati-Salam model]
- Severe bounds from processes involving μ & e (such as $K_L \rightarrow \mu e$)
 - → avoided with non-trivial flavor structure [e.g. non-univ. interactions]

On the other hand, they are a "natural" feature in many SM extensions

- → "Renaissance" of LQ models (to explain the anomalies, but not only...):
- Scalar LQ as PNG
 Gripaios, '10
 Gripaios, Nardecchia, Renner, '14
 Marzocca '18
- Vector LQ as techni-fermion resonances

Barbieri *et al.* '15; Buttazzo *et al.* '16, Barbieri, Murphy, Senia, '17 + ...

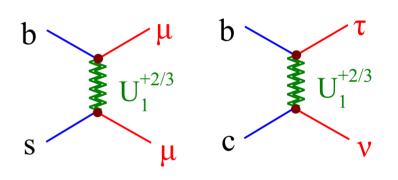
• Scalar LQ from GUTs & R SUSY

Hiller & Schmaltz, '14; Becirevic et al. '16,

Fajfer et al. '15-'17; Dorsner et al. '17;

Crivellin et al. '17; Altmannshofer et al. '17

Trifinopoulos '18, Becirevic et al. '18 + ...


• LQ as Kaluza-Klein excit.

Megias, Quiros, Salas '17 Megias, Panico, Pujolas, Quiros '17 Blanke, Crivellin, '18 + ... Vector LQ in GUT gauge models

> Assad *et al.* '17 Di Luzio *et al.* '17 Bordone et *al.* '17 Heeck & Teresi '18 + ...

Which LQ explains which anomaly?

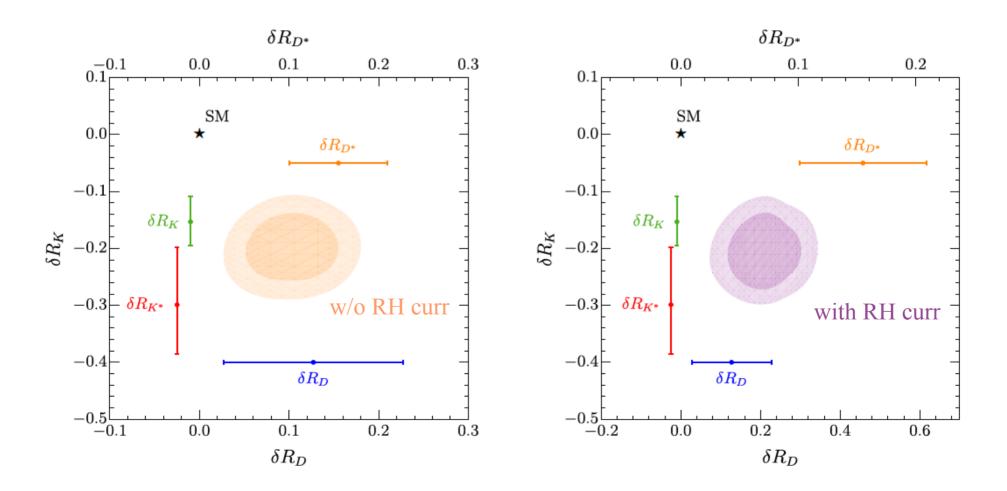
	Model	$R_{K^{(*)}}$	$R_{D^{(*)}}$	$R_{K^{(*)}} \& R_{D^{(*)}}$
Scalars	$S_1 = (3, 1)_{-1/3}$	X	✓	X
	$R_2 = (3, 2)_{7/6}$	X	✓	×
	$\widetilde{R}_2=(3,2)_{1/6}$	X	×	×
	$S_3 = (3, 3)_{-1/3}$	✓	×	×
Vector	$U_1 = (3, 1)_{2/3}$	✓	✓	✓
Ve($\sigma U_3 = (3,3)_{2/3}$	✓	X	×

Angelescu, Becirevic, DAF, Sumensari [1808.08179]

Barbieri, GI, Pattori, Senia '15

- → mediator: U₁
- flavor structure: U(2)ⁿ

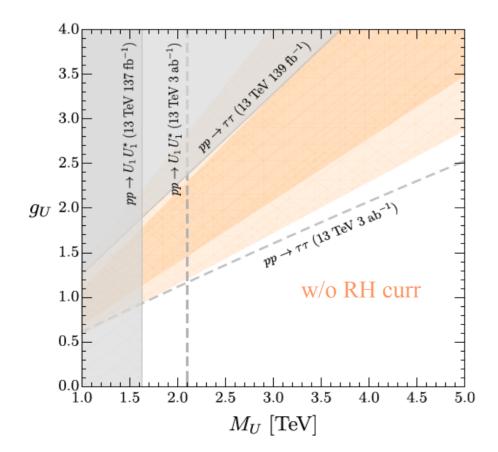
approx. flavor symmetry resulting from the multi-scale picture

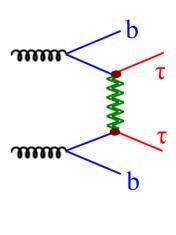

LQ of the Pati-Salam gauge group:

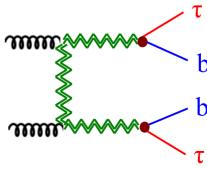
$$SU(4)$$
 \times $SU(2)_L \times SU(2)_R$

Considering the U₁ only

$$\mathcal{L} \supset \frac{g_U}{\sqrt{2}} U_1^{\mu} \left[\beta_{i\alpha}^L (\bar{q}_L^i \gamma_{\mu} \mathcal{E}_L^{\alpha}) - \beta_{i\alpha}^R (\bar{d}_R^i \gamma_{\mu} e_R^{\alpha}) \right] + \text{h.c.}$$

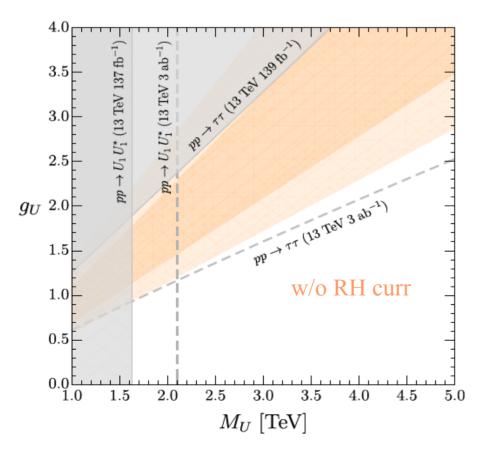

and fitting all low-energy data leads to an excellent description of present data:

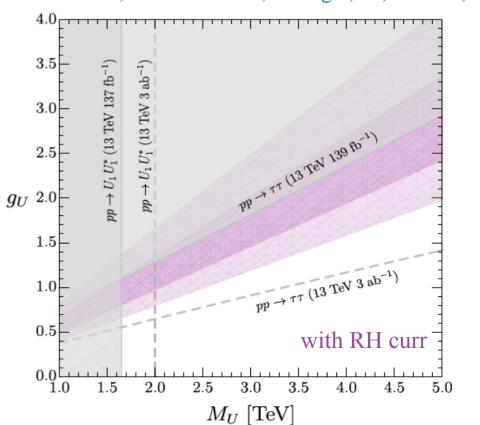



Considering the U₁ only

$$\mathcal{L} \supset \frac{g_U}{\sqrt{2}} \, U_1^\mu \left[\beta_{i\alpha}^L (\bar{q}_L^i \gamma_\mu \mathcal{E}_L^\alpha) - \beta_{i\alpha}^R (\bar{d}_R^i \gamma_\mu e_R^\alpha) \right] + \text{h.c.}$$

and fitting <u>all low-energy data</u> leads to an excellent description of present data which is fully <u>consistent with high-pT searches</u> [within the reach of HL-LHC]:




Considering the U₁ only

$$\mathcal{L} \supset \frac{g_U}{\sqrt{2}} \, U_1^\mu \left[\beta_{i\alpha}^L (\bar{q}_L^i \gamma_\mu \mathcal{E}_L^\alpha) - \beta_{i\alpha}^R (\bar{d}_R^i \gamma_\mu e_R^\alpha) \right] + \text{h.c.}$$

and fitting <u>all low-energy data</u> leads to an excellent description of present data which is fully <u>consistent with high-pT searches</u> [within the reach of HL-LHC]:

Cornella, Fuentes-Martin, Faroughi, GI, Neubert, '21

From EFT to simplified models [the possible mediators]

Considering the U₁ only

$$\mathcal{L} \supset \frac{g_U}{\sqrt{2}} \, U_1^\mu \left[\beta_{i\alpha}^L (\bar{q}_L^i \gamma_\mu \mathcal{E}_L^\alpha) - \beta_{i\alpha}^R (\bar{d}_R^i \gamma_\mu e_R^\alpha) \right] + \mathrm{h.c.}$$

and fitting <u>all low-energy data</u> leads to an excellent description of present data which is fully <u>consistent with high-pT searches</u>, and has interesting implications for future low-energy searches:

 10^{-6} Excluded at 95% CL Excluded at 95% CL 10^{-3} 10^{-7} 10^{-8} Belle II (50 ab^{-1}) Belle II (50 ab^{-1}) 10^{-9} 10^{-11} 10^{-6} with RH curr 10^{-12} - w/o RH curr 0.10 0.15 10^{-4} 0.05 0.20 0.00 δR_{D^*} $\mathcal{B}(B_s \to \tau^- \mu^+)$

First observation: | the Pati & Salam group, proposed in the 70's to unify quarks & leptons predicts the <u>only massive LQ</u> that is a good mediator for <u>both</u> anomalies:

Pati-Salam group: $SU(4)\times SU(2)_L\times SU(2)_R$

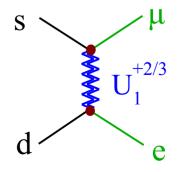
Fermions in SU(4):
$$\begin{bmatrix} Q_L^{\alpha} \\ Q_L^{\beta} \\ Q_L^{\gamma} \\ L_L \end{bmatrix} \begin{bmatrix} Q_R^{\alpha} \\ Q_R^{\beta} \\ Q_R^{\gamma} \\ L_R \end{bmatrix}$$
 Main Pati-Salam idea: Lepton number as "the 4th color" The massive LQ $[U_1]$ arise from the breaking SU(4) \rightarrow SU(3)_C×U(1)_{B-L}

breaking $SU(4) \rightarrow SU(3)_C \times U(1)_{B-L}$

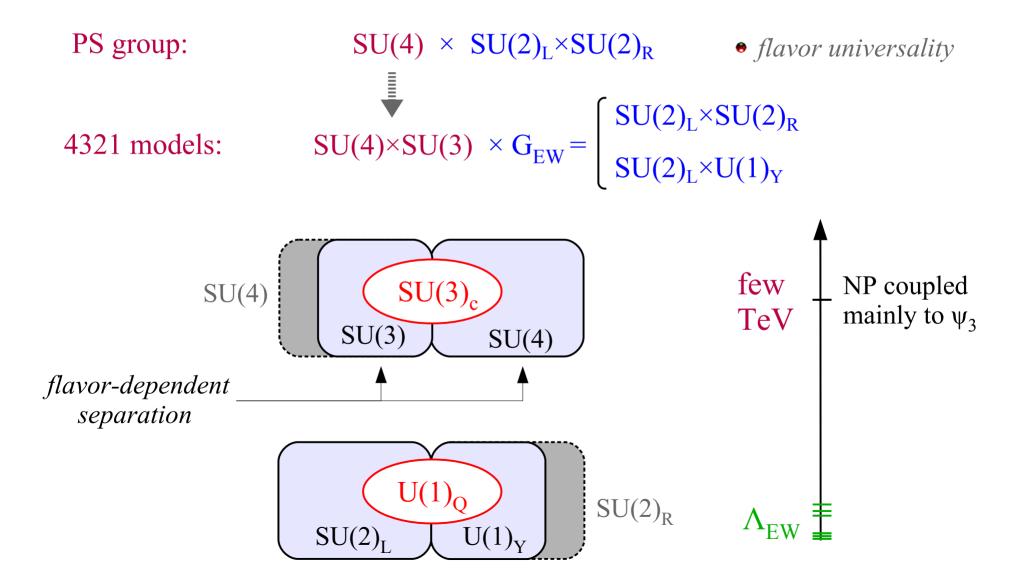
Main Pati-Salam idea:

 $SU(4) \sim \begin{vmatrix} SU(3)_C & 0 \\ 0 & 0 \end{vmatrix} = \begin{vmatrix} 0 & LQ \\ LO & 0 \end{vmatrix} = \begin{vmatrix} \frac{1}{3} & 0 \\ 0 & -1 \end{vmatrix}$

First observation: the Pati & Salam group, proposed in the 70's to unify quarks & leptons predicts the <u>only massive LQ</u> that is a good mediator for <u>both</u> anomalies:


Pati-Salam group: $SU(4)\times SU(2)_L\times SU(2)_R$

Fermions in SU(4):
$$\begin{array}{c|c} Q_L^{\alpha} & \text{Main Pati-Salam idea:} \\ Q_L^{\beta} & Q_R^{\beta} \\ Q_L^{\gamma} & Q_R^{\gamma} \\ \end{array}$$
 The massive LQ $\begin{bmatrix} \mathbf{U}_1 \end{bmatrix}$ arise from the breaking SU(4) \rightarrow SU(3)_C×U(1)_{B-L}


The problem of the "original PS model" are the strong bounds on the LQ couplings to 1st & 2nd generations [e.g. M > 200 TeV from $K_L \rightarrow \mu e$]

Attempts to solve this problem simply adding
extra fermions or scalars

Calibbi, Crivellin, Li, '17;
Fornal, Gadam, Grinstein, '18
Heeck, Teresi, '18

Second observation: we can "protect" the light families charging under SU(4) only the 3rd gen. or, more generally, "separating" the universal SU(3) component

Second observation: we can "protect" the light families charging under SU(4) only the 3rd gen. or, more generally, "separating" the universal SU(3) component

PS group:
$$SU(4) \times SU(2)_{L} \times SU(2)_{R} \qquad \bullet \text{ flavor universality}$$

$$4321 \text{ models:} \qquad SU(4) \times SU(3) \times G_{EW} = \begin{bmatrix} SU(2)_{L} \times SU(2)_{R} \\ SU(2)_{L} \times U(1)_{Y} \end{bmatrix}$$

• Non-universality via mixing

$$SU(4)\times SU(3)$$

$$SU(4)\times SU(3)$$
 $SU(4)_3\times SU(3)_{1,2}$

• Accidental U(2)⁵ flavor symm. in the gauge sect.

$$SU(3)\times G_{EW}\times G_{HC}$$
Barbieri, Tesi '17

$$SU(4)_h\times SU(4)_l\times G_{EW}\times G_{HC}$$
Fuentes-Martin & Stangl '20

$$SU(4)\times SU(3)\times G_{EW}$$
Di Luzio, Greljo, Nardecchia, '17

$$[PS]_{warped-5d, 3-branes}$$

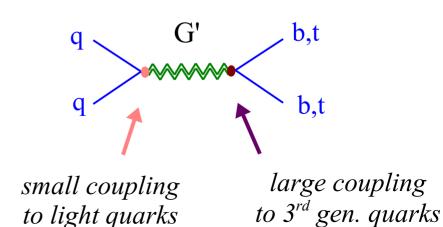
$$[PS]^3 = [SU(4)\times G_{EW}]^3$$
Bordone *et al.* '17

Fuentes-Martin *et al.* '20 + work in prog.

In most *PS-extended models* collider and low-energy pheno are controlled by the effective 4321 gauge group that rules TeV-scale dynamics Di Luzio, Greljo,

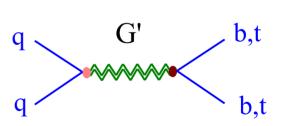
blled ψ_3 $\psi_{1,2}$ $\psi_{1,2}$ Di Luzio, Greljo, Nardecchia, '17

 $SU(4)_{3} \times SU(3)_{1+2} \times [SU(2)_{L} \times U(1)']$

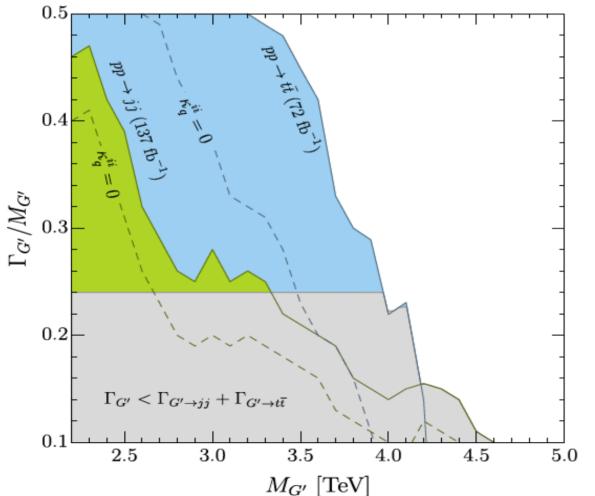

SM

Despite the apparent complexity, the construction is highly constrained

- Positive features the EFT reproduced
- Precise predictions for high-pT data

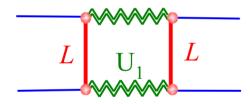

consistent
with
present
data!

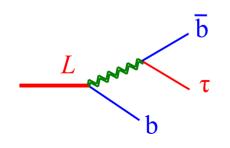
New striking collider signature: **G**' ("coloron" = heavy color octet)

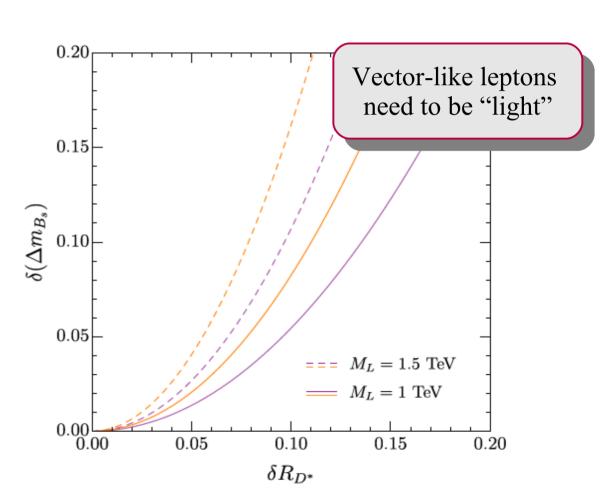


In most *PS-extended models* collider and low-energy pheno are controlled by the effective 4321 gauge group that rules TeV-scale dynamics Di Luzio, Greljo,

ider $SU(4)_3 \times SU(3)_{1+2} \times [SU(2)_L \times U(1)']$ ψ_3 $\psi_{1,2}$ \to $LQ[U_1] + Z' + G$ SM

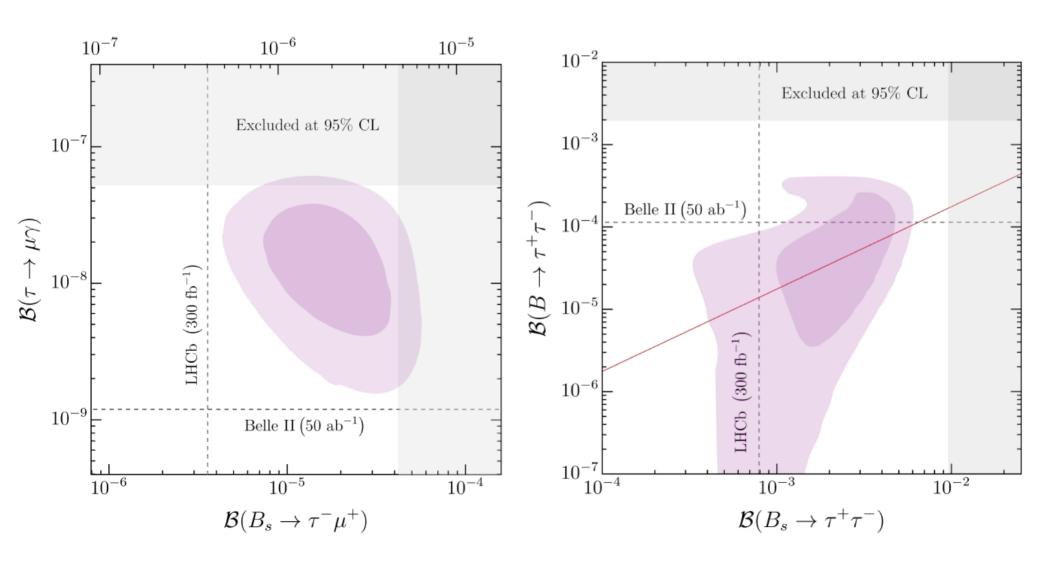


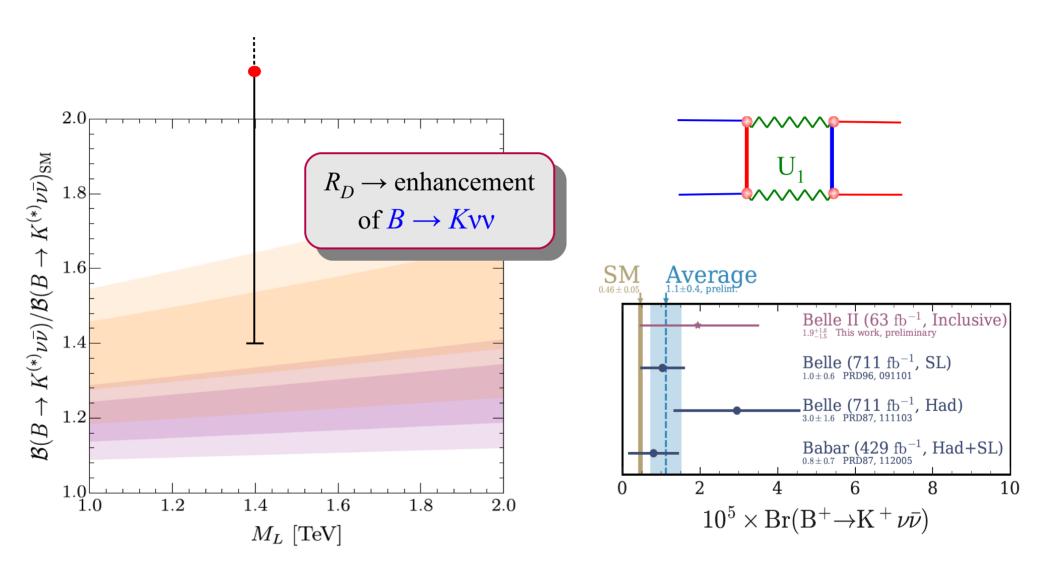

Presently, the strongest constraint on the energy scale of the model [from $pp \rightarrow t \bar{t}$]



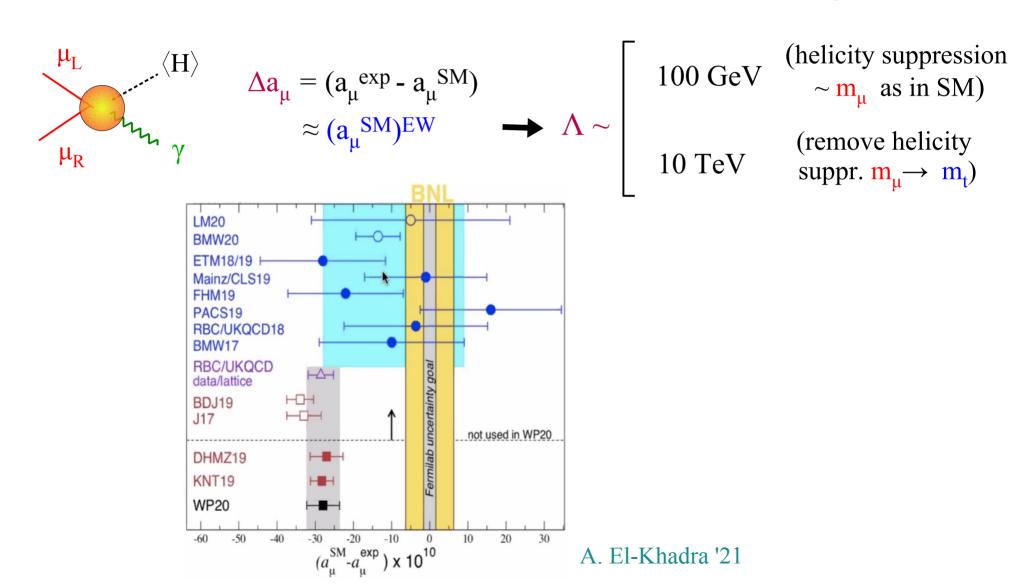
A second important ingredient of this class of UV models are vector-like quarks and vector-like leptons, which play a key role in both low- and high-energy observables

E.g.: B_s mixing [$\Delta F=2$]




Fuentes-Martin, GI, Konig, Selimovic, '20 Cornella, Fuentes-Martin, Faroughi, GI, Neubert, '21

Other low-energy observables


Other low-energy observables

Fuentes-Martin, GI, Konig, Selimovic, '20 Cornella, Fuentes-Martin, Faroughi, GI, Neubert, '21

\blacktriangleright *What about* (g-2)_u?

Not obvious how to reconcile the $(g-2)_{\mu}$ anomaly with both flavor anomalies and, more generally, with models with a "natural" flavor structure ($\leftrightarrow Y_{SM}$).

\blacktriangleright *What about* (g-2)_{μ}?

Not obvious how to reconcile the $(g-2)_{\mu}$ anomaly with both flavor anomalies and, more generally, with models with a "natural" flavor structure ($\leftrightarrow Y_{SM}$).

Main difficulty: strong flavor alignment needed to avoid bounds from $\mu \to e \gamma$ (10⁻⁵ alignment in the 1 \leftrightarrow 2 sector) & $\tau \to \mu \gamma$ (10⁻¹ alignment)

Example of recent attempts to combine LFU anomalies & g-2

- $a_{\mu} \oplus R_{K}$ with special role of muons $[U(1)_{B-3L_{\mu}} \subset G]$
- $a_{\mu} \oplus R_{K} \oplus R_{D}$ with 2 scalars $[S_1 + \phi^+]$ and peculiar flavor struct.

Greljo, Stangl, Thomsen '21

Marzocca, Trifinopoulos '21

Greljo, Stangl,

Thomsen '21

\blacktriangleright *What about* (g-2)_{μ}?

Not obvious how to reconcile the $(g-2)_{\mu}$ anomaly with both flavor anomalies and, more generally, with models with a "natural" flavor structure ($\leftrightarrow Y_{SM}$).

Main difficulty: strong flavor alignment needed to avoid bounds from $\mu \to e \gamma$ (10⁻⁵ alignment in the 1 \leftrightarrow 2 sector) & $\tau \to \mu \gamma$ (10⁻¹ alignment)

Example of recent attempts to combine LFU anomalies & g-2

- $a_{\mu} \oplus R_{K}$ with special role of muons $[U(1)_{B-3L_{u}} \subset G]$
- → $a_u \oplus R_K \oplus R_D$ with 2 scalars $[S_1 + \phi^+]$ and peculiar flavor struct. Marzocca, Trifinopoulos '21

However... (g-2)_{μ} is more "flexible" (no generation change, necessary loop-level) \rightarrow could come from light NP. No obvious connection to the flavor anomalies