Topological correlators of massive \mathcal{N} = 2 SQCD and 5d \mathcal{N} = 1 YM on S^1

Jan Manschot

"Algebra and Quantum Geometry of BPS Quivers" Les Diablerets, January 22 2025

Trinity College Dublin Coláiste na Trionóide, Baile Átha Cliath The University of Dublin

This talk is mostly based on

"Topological Twists of Massive SQCD" arXiv:2206.08943 + 2312.11616 with Johannes Aspman and Elias Furrer,

and "Path Integral Derivations of K-Theoretic Donaldson Invariants" to appear with Heeyeon Kim, Greg Moore, Runkai Tao, and Xinyu Zhang. Correlation functions are at heart of quantum field theory:

$$\langle \mathcal{O}_1(x_1) \mathcal{O}_2(x_2) \dots \mathcal{O}_n(x_n) \rangle = \int [\mathcal{D}\mathcal{X}] \mathcal{O}_1(x_1) \mathcal{O}_2(x_2) \dots \mathcal{O}_n(x_n) e^{-\mathcal{S}(\mathcal{X})}$$

Large effort to include all perturbative and non-perturbative effects, and to increase n.

Motivation to study theories where such effects can be included.

Path integrals and correlation functions can be evaluated exactly for topologically twisted $\mathcal{N} = 2$ and $\mathcal{N} = 4$ Yang-Mills theories in many cases. These observables feature many crucial non-perturbative phenomena in Yang-Mills theory.

Such results provide at the same time deep connections to the geometry of four-manifolds and instanton moduli spaces, as well as to analytic number theory.

The correlation functions involve topological invariants of four-manifolds, such as Donaldson-Witten invariants, Seiberg-Witten invariants, Vafa-Witten invariants, Segre numbers and K-theoretic Donaldson invariants.

On a compact four-manifold X, the path integral is a functional integral over all fields of the topologically twisted theory. For manifolds with $b_2^+(X) = 1$, there is a contribution from the Coulomb branch of the theory.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 \Rightarrow analysis of Coulomb branches and effective couplings

The gauge group is spontaneously broken by a vev of the vector multiplet scalar $\phi,$

$$\phi = \left(\begin{array}{cc} a & 0\\ 0 & -a \end{array}\right)$$

with (classical) gauge invariant order parameter

$$u = \left< \mathsf{Tr}\phi^2 \right> = 2a^2$$

The perturbative part of the effective coupling reads

$$\tau = \frac{\theta}{4\pi} + \frac{4\pi i}{g^2} \sim \frac{4i}{\pi} \log(a/\Lambda) + \dots$$

Pure $\mathcal{N} = 2$, SU(2) Yang-Mills

SW curve provides full solution:

$$y^2 = x^3 - u x^2 + \frac{1}{4} \Lambda_0^4 x, \qquad a = \int_A \lambda_{SW}$$

Seiberg, Witten (1994)

 \Rightarrow Expresses *u* in terms of Jacobi theta series:

$$\begin{aligned} \frac{u(\tau)}{\Lambda_0^2} &= -\frac{1}{2} \frac{\vartheta_2(\tau)^4 + \vartheta_3(\tau)^4}{\vartheta_2(\tau)^2 \vartheta_3(\tau)^2} \\ &= -\frac{1}{8} (q^{-1/4} + 20q^{1/4} - 62q^{3/4} + 216q^{5/4} + \mathcal{O}(q^{7/4})), \end{aligned}$$

with $q = e^{2\pi i \tau}$ and ϑ_j Jacobi theta series.

Matone (1996), Nahm (1996),...

Theory has two strong coupling singularities for $u = \pm \Lambda_0^2$, where a monopole and dyon become massless.

Monodromies around the singularities generate the group $\Gamma^{0}(4)$, which leave *u* invariant

$$u\left(\frac{a\tau+b}{c\tau+d}\right) = u(\tau)$$
 for $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma^{0}(4)$

$$\Gamma^{0}(4) = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in SL_{2}(\mathbb{Z}) : b = 0 \mod 4 \right\}$$

Fundamental domain for pure $\mathcal{N} = 2$

Right: u-plane, and its partitioning given by the images of \mathcal{F}_I in $\mathbb{H}/\Gamma^0(4)$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Aspman, Furrer, JM (2021)

The theory with $N_f = 1$

Include one hypermultiplet in fundamental representation of SU(2)

Global symmetry group: $(Spin(4) \times SU(2)_R \times U(1)^{(f)})/\mathbb{Z}_2$ **Effective coupling**: The perturbative contributions read

$$au \sim rac{4i}{\pi} \log(a/\Lambda) - rac{i}{2\pi} \log((a+m)/\Lambda) - rac{i}{2\pi} \log((a-m)/\Lambda) + \dots$$

Massless theory has three strong coupling singularities.

u for this theory reads:

$$\begin{aligned} \frac{u(\tau)}{\Lambda_1^2} &= -\frac{3}{2^{\frac{7}{3}}} \frac{\sqrt{E_4(\tau)}}{\sqrt[3]{E_4(\tau)^{\frac{3}{2}} - E_6(\tau)}} \\ &= -\frac{1}{16} (q^{-1/3} + 104q^{2/3} - 7396q^{5/3} + \mathcal{O}(q^{8/3})) \end{aligned}$$

 N_{ahm} (1996) \Rightarrow thus u is expressed in terms of square roots of modular forms, which are in general *not* modular forms. One can verify that it is left invariant under the "path" transformations.

Sextic polynomial for u

To determine u, we bring the SW curve to Weierstrass form

$$y^2 = 4x^3 - g_2 x - g_3$$

This gives rise to the polynomial,

$$P_{N_f}(X) = (g_2(X, \boldsymbol{m}, \Lambda)^3 - 27g_3(X, \boldsymbol{m}, \Lambda)^2)j - 12^3g_2(X, \boldsymbol{m}, \Lambda)^3$$

= $a_6 X^6 + a_5 X^5 + \ldots + a_1 X + a_0$,

where the coefficients $a_i = a_i(\boldsymbol{m}, \Lambda, j)$ are polynomial functions of \boldsymbol{m} , Λ , and the *j* function, $a_i(\boldsymbol{m}, \Lambda, j) \in \mathbb{C}[\boldsymbol{m}, \Lambda, j]$.

The polynomials can thus be viewed as polynomials over the field $\mathbb{C}[\mathbf{m}, \Lambda, j]$. In general no explicit solution X available. X can be considered as a single-valued function on a 6-fold branched cover of $\mathbb{H}/SL_2(\mathbb{Z})$. The branch points can occur if two or more (*j*-dependent) roots of P_{N_f} coincide for a specific value of j_{bp} of *j*.

Increasing the mass m > 0, the branch points move to the interior such that we get branch cuts in the fundamental domain:

Argyres-Douglas mass mAD

For the Argyres-Douglas mass $m_{AD} = \frac{3}{4}\Lambda_1$, two mutually non-local singularities collide in the *u*-plane, and the theory becomes superconformal. Within \mathcal{F}_1 , the two branch points collide for this mass at $e^{\pi i/3} + 1$, and annihilate each other. The two strong coupling regions are disconnected from the other four. The resulting domain is a domain for $\Gamma^0(3)$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Beyond m_{AD} , the branch points return. They follow the following path:

Decoupling of hypermultiplet: cutting and gluing

In this way, we can see that the hypermultiplet smoothly decouples, returning to the one for $N_f = 0$

SAC

Another important theory is the 5-dimensional $\mathcal{N} = 1$ gauge theory theory compactified on a circle of radius R. The theory in 4d includes a full KK tower of states.

Work in progress together with Kim, Moore, Tao and Zhang

Bosonic fields: gauge field A_m , $m = 0, \ldots, 4$, real scalar σ

Global symmetries: $(Spin(4) \times SU(2)_R)/\mathbb{Z}_2 \times U(1)^{(I)}$

The current for the $U(1)^{(I)}$ symmetry is $j = *\frac{1}{8\pi^2} \text{Tr}F \wedge F$ and the charged particles are instanton particles.

Seiberg (1996); Morrison, Seiberg, Intrilligator (1996),...

1-form center symmetry: shift of A_m by a \mathbb{Z}_N -valued flat connection for SU(N)

・ロト・西ト・ヨト・ヨー シック

5d action

SUSY action:

$$S_{YM} = \frac{1}{g_{5d}^2} \int dx^5 \operatorname{Tr} \left[\frac{1}{2} F_{mn} F^{mn} + (D_m \sigma)^2 + \dots \right]$$

Chern-Simons term:

$$S_{\rm CS} = -\frac{i\kappa}{24\pi^2} \int_{X \times S^1} {\rm Tr}[A \wedge F \wedge F] + \dots$$

Tachikawa (2004)

Weakly gauge $U(1)^{(I)}$ by introducing "frozen" vector multiplet (A_m^I, σ^I) . Mixed CS-term

$$S_{\text{mixed CS}} = \int_{X \times S^1} iF' \wedge \text{Tr}[AdA + \frac{2}{3}A^3] - \frac{1}{8\pi^2}\sigma' \text{Tr}[F \wedge *F] + \dots$$

Baulieu, Losev, Nekrasov (1997)

Gives rise to standard kinetic terms in 4d with $\sigma' = -\frac{8\pi^2}{g_{5d}^2}$

We include a background flux $\mathbf{n} = [F^{1}/2\pi] \in H^{2}(X,\mathbb{Z})$ for the topological global $U(1)^{(I)}$ symmetry.

4d KK theory on $\mathbb{R}^4 \times S^1$

Parameters: 4d scale Λ , and S^1 radius R

Dimensionless parameter: $\mathcal{R} = \Lambda R = e^{-8\pi^2 R/g_{5d}^2 + i\theta}$ with θ the holonomy of A'

Electric BPS particles for gauge group SU(2):

- W-bosons: $Z_a = 2a = \frac{2}{R} \int_{S^1} (\sigma + iA_5) dx^5$
- instanton particle: $Z_I = \frac{1}{R} \log(\mathcal{R}^4)$
- unit momentum around S^1 : $Z_K = \frac{2\pi i}{R}$

Prepotential

$$\mathcal{F}(a, R, \Lambda) = \frac{2}{R^2} \left(\mathsf{Li}_3(e^{-Ra} - \zeta(3)) \right) + a^2 \left(\mathsf{log}(\mathcal{R}) - \frac{\pi i}{2} \right) + O(\mathcal{R})$$

The Coulomb branch order parameter is the vev of the Wilson line operator

$$U = \left(\operatorname{Tr} \mathsf{P} \exp\left(\int_{S_1} (\sigma + iA_5) dx_5 \right) \right) = e^{Ra} + e^{-Ra} + O(\mathcal{R})$$

Action of 1-form symmetry T:

$$T: \left\{ \begin{array}{l} a \mapsto a + \frac{\pi i}{R} \\ U \mapsto -U \end{array} \right.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

5d SU(2) theory on $\mathbb{R}^4 \times S^1$

SW curve for κ = 0:

$$\Sigma: \quad Y^2 = P(X)^2 - 4X^2 \mathcal{R}^4, \qquad P(X) = X^2 + UX + 1,$$

Nekrasov (1996); Ganor, Morrison, Seiberg (1996); Göttsche, Yoshioka, Nakajima (2006),...

Four singularities: $U = \pm 2(\mathcal{R}^2 \pm 1)$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

Using the theory of elliptic curves, one can demonstrate

$$U^2 = -8\mathcal{R}^2\mathsf{u} + 4\mathcal{R}^4 + 4,$$

with

$$\mathsf{u}(\tau) = \frac{\vartheta_2(\tau)^4 + \vartheta_3(\tau)^4}{2\vartheta_2(\tau)^2 \vartheta_3(\tau)^2}, \qquad \mathcal{R} = R\Lambda$$

with au the complex structure of Σ

 $U(\tau)$ is a function on the double cover of the pure SU(2) domain $(\mathbb{H}/\Gamma^{0}(4))$. It includes a branch point and cuts:

We can rearrange the domain to avoid cuts at infinity.

In the limit $\mathcal{R} \to 1$ the branch points disappear and the U is a modular form for (a congruence of) $\Gamma^0(8)$.

See also Closset, Magureanu (2021)

 $H^2(X,\mathbb{Z})$ together with the intersection form

$$B(\boldsymbol{k}_1, \boldsymbol{k}_2) = \int_X \boldsymbol{k}_1 \wedge \boldsymbol{k}_2, \qquad \boldsymbol{k}_{1,2} \in H^2(X, \mathbb{Z})$$

gives rise to an integral, uni-modular lattice L (the image of $H^2(X,\mathbb{Z})$ in $H^2(X,\mathbb{R})$)

The lattice has signature (b_2^+, b_2^-) . For non-vanishing correlators, $b_2^+ + b_1 = \text{odd}$. We restrict to $b_1 = 0$.

For $b_2^+ = 1$, let *J* be the normalized generator of the unique self-dual direction in $H^2(X, \mathbb{R})$. It provides the projection of $\mathbf{k} \in L$ to $(L \otimes \mathbb{R})^+$,

$$\boldsymbol{k}_{+} = B(\boldsymbol{k}, J) J$$

Assume X is spin, such that the chiral SU(2) spin bundles are well-defined.

Donaldson-Witten twist: Replace $SU(2)_+$ representation by that of the diagonally embedded subgroup in $SU(2)_+ \times SU(2)_R$ $\Rightarrow \phi$ and A_μ remain a vector and scalar, but hypermultiplet scalars (Q, \tilde{Q}^{\dagger}) become space-time spinors $(M_{\dot{\alpha}}, \bar{M}_{\dot{\alpha}})$

Topological twisting

Spinors $M_{\dot{\alpha}}$ are problematic for the generalization to non-spin X. We cure this by coupling the hypermultiplet to the Spin^c line bundle \mathcal{L} , such that

$$W^+ = S^+ \otimes \mathcal{L}^{1/2}$$

is a well-defined Spin^c bundle

$$c_1(\mathcal{L}) = \bar{w}_2(X) + \bar{w}_2(E) + 2L$$

Aspman, Furrer, JM (2022)

For \mathfrak{s} canonically determined by an ACS

$${\cal W}^+\simeq \Lambda^0\oplus \Lambda^{0,2}, \qquad {\cal W}^-\simeq \Lambda^{0,1}$$

For Spin^c structures for fundamental matter: Hyun, Park, Park (1995), Labastida, Marino (1997) For Spin^c structures for adjoint matter: JM, Moore (2021) More generally Moore, Saxena, Singh (2024)

Relation to Donaldson invariants

Examples of observables in the Q-cohomology of DW-theory are:

• Point observable:

$$\mathcal{O}^{(0)}(p) = u(p),$$

• Surface observable:

$$\mathcal{O}^{(2)}(\boldsymbol{x}) = I_{-}(\boldsymbol{x}) = \frac{1}{4\pi^2} \int_{\boldsymbol{x}} \operatorname{Tr}\left[\frac{1}{8}\psi \wedge \psi - \frac{1}{\sqrt{2}}\phi F\right], \quad \boldsymbol{x} \in H_2(M, \mathbb{Z})$$

These observables correspond to differential forms on the moduli space, a 4-form ω_u and a 2-form $\omega_I(\mathbf{x})$.

Provide physical understanding for the Donaldson invariants of a compact smooth four-manifold M:

$$\left\langle e^{\mathcal{O}^{(0)(p)}+\mathcal{O}^{(2)}(\boldsymbol{x})}\right\rangle = \sum_{\ell,n\geq 0} D_{\ell,n} p^{\ell} \boldsymbol{x}^{n},$$

where the $D_{\ell,n}$ are Donaldson invariants,

$$D_{\ell,n}p^{\ell}\boldsymbol{x}^{n} = \int_{\mathcal{M}_{k}} \omega_{u}(p)^{\ell} \wedge \omega_{I}(\boldsymbol{x})^{n}$$

Witten (1988)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Evaluation of correlation functions

• For compact four-manifolds, the path integral includes integral over *u*:

$$\langle \mathcal{O} \rangle = \langle \mathcal{O} \rangle_{u-\text{plane}} + \langle \mathcal{O} \rangle_{SW}$$

where $\langle \mathcal{O} \rangle_{SW}$ has δ -function support on the cusps $u = \pm 1$

- ⟨𝒫⟩_{u-plane} =: Φ^J_µ[𝒫] is non-vanishing only for b⁺₂ ≤ 1. Such four-manifolds provide a testing ground for the analysis of Coulomb branches.
- For b⁺₂ = 1, the path integral reduces to an integral over zero modes A_μ, φ₀ = a, η₀, ψ₀, χ₀.

Witten (1995); Moore, Witten (1997); Losev, Nekrasov, Shatashvili (1997)

Partition function

Assume X has in addition $b_1 = 0 \Rightarrow$ no ψ zero modes Partition function for theory on X:

$$\Phi^{J}_{\mu} = \sum_{\text{fluxes}} \int da \, d\bar{a} \, d\eta_0 \, d\chi_0 \, A(u)^{\chi(X)} B(u)^{\sigma(X)} \, e^{-\int_X \mathcal{L}_0}$$
$$= \int_{\mathcal{F}_T} d\tau \wedge d\bar{\tau} \, \nu(\tau) \, \Psi^{J}_{\mu}(\tau, \bar{\tau})$$

with $(q = e^{2\pi i \tau})$

- $\nu(\tau) = \frac{da}{d\tau} A(u)^{\chi(M)} B(u)^{\sigma(M)} = q^{-\frac{3}{8}} + \dots$
- Sum over fluxes:

$$\Psi_{\mu}^{J}(\tau,\bar{\tau}) = \frac{1}{\sqrt{y}} \sum_{k \in L+\mu} B(k,J) \, q^{-k_{-}^{2}/2} \, \bar{q}^{k_{+}^{2}/2}$$

where $L = H^2(X, \mathbb{Z})/\text{torsion}$ with bilinear form $B(\cdot, \cdot)$, J is the period point of M, $\mu \in L/2$ is the 't Hooft flux

Efficient evaluation using mock modular forms for all X with $b_2^+ = 1$

Korpas, JM (2017); Korpas, JM, Moore, Nidaiev (2019); JM, Moore (2021)

Construction of a suitable anti-derivative:

$$\frac{\partial \widehat{F}(\tau,\bar{\tau})}{\partial \tau} = \Psi^{J}_{\mu}(\tau,\bar{\tau}),$$

Then

 $\Phi^{J}_{\mu}[\mathcal{O}] = [\mathcal{O}\nu(\tau)F(\tau)]_{q^{0}} + \text{contributions from other cusps},$

with $F(\tau) = \sum_{n} c(n) q^{n}$ the holomorphic part of $\widehat{F}(\tau, \overline{\tau})$

SW contributions

General form of partition function:

$$Z^J_\mu = \Phi^J_\mu + \sum_{j=1}^{2+N_f} Z^J_{SW,j,\mu}$$

with

$$Z_{SW,j,\mu}^{J} = \mathcal{A}_{j}^{\chi} \mathcal{B}_{j}^{\sigma} \sum_{c} SW(c; J) \mathcal{E}_{j}^{c^{2}} \mathcal{F}_{\mu}(c)$$

The terms on the rhs undergo wall-crossing upon varying J. Wall-crossing from the singularity u_j of Φ^J_{μ} is absorbed by the wall-crossing of $Z^J_{SW,j,\mu}$:

$$\left[\Phi_{\mu}^{J^{+}} - \Phi_{\mu}^{J^{-}}\right]_{j} = Z_{SW,j,\mu}^{J^{-}} - Z_{SW,j,\mu}^{J^{+}}$$

This makes it possible to derive $Z_{SW,j,\mu}^J$ in terms SW(c; J) with c the IR Spin^c structure. Moreover, it is possible to extend the results to manifolds with $b_2^+ > 1$. The Q-fixed equations are the non-Abelian Seiberg-Witten equations:

Witten (1994); Labastida, Marino (1995); Labastida, Lozano (1998),...

Equations are invariant under $U(1)^{(f)}$ symmetry: $M_{\dot{\alpha}} \rightarrow e^{i\varphi}M_{\dot{\alpha}}$ $M_{\dot{\alpha}}$ is a spinor $\Rightarrow X$ is spin, or coupling to a Spin^c structure \mathfrak{s} required.

うせん 聞い ふぼう ふぼう ふしゃ

Moduli space of solutions \mathcal{M}_k^Q

The $U(1)^{(f)}$ fixed point locus consists of two components:

- Instanton component \mathcal{M}_{k}^{i} : $M_{\dot{\alpha}} = 0$ and $F^{+} = 0$
- Abelian component M^a_k: F diagonal, and M_ά strictly upper or lower triangular

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Then a correlator $\langle \mathcal{O} \rangle$ reduces to an integral of differential forms \mathcal{M}^Q :

$$\langle \mathcal{O} \rangle = \sum_{k} \Lambda^{\operatorname{vdim}(\mathcal{M}_{k}^{Q})} \int_{\mathcal{M}_{k}^{Q}} \operatorname{Eul}(\operatorname{Cok}(\mathcal{D})) \omega_{\mathcal{O}}$$

with Eul($Cok(\emptyset)$) the equivariant Euler class of the cokernel bundle. This can be expanded in terms of Chern classes c_{ℓ} of the index bundle W_k

$$\begin{split} \langle \mathcal{O} \rangle &= \sum_{k} \Lambda^{\text{vdim}(\mathcal{M}_{k}^{Q})} m^{-\text{rk}(W_{k})} \\ &\times \left[\int_{\mathcal{M}_{k}^{i}} \sum_{\ell} \frac{c_{\ell}}{m^{\ell}} \, \omega_{\mathcal{O}} + \int_{\mathcal{M}_{k}^{a}} \sum_{\ell} \frac{c_{\ell}}{m^{\ell}} \, \omega_{\mathcal{O}} \right], \end{split}$$

Losev, Nekrasov, Shatashvili (1998),... In the $m \to \infty$ limit, only $\ell = 0$ contributes, while in the limit $m \to 0$ only c_{top} contributes Mathematicians (Göttsche, Kool,...) refer to these intersection numbers as "Segre numbers". Four-manifold \mathbb{P}^2 :

- $b_2 = b_2^+ = 1$
- non-spin
- SW-invariants vanish \Rightarrow *u*-plane gives full result

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Aspman, Furrer, JM analyzed topological correlators of these theories with generic masses.

l	$\Phi_{1/2}[u^{\ell}]$ for $N_f = 1$	l	e	$\Phi_{1/2}[u^\ell]$ for $N_f=2$
0	$rac{m}{\Lambda_1}$	0	р	$\frac{m^2}{\Lambda_2^2} + \frac{3}{64} \frac{m^4}{m^4}$
1	$-\frac{7}{2^6}\frac{\Lambda_1^2m^2}{m^2}$	1	1	$-rac{7}{2^5}rac{m^4}{m^2}$
2	$\frac{19}{2^6}\frac{\Lambda_1^2m^2}{m^0}$	2	2	$\frac{19}{2^6}m^4 + \frac{23}{2^7}\frac{\Lambda_2^2m^6}{m^4} + \frac{53}{2^{18}}\frac{\Lambda_2^4m^8}{m^8}$
3	$-\frac{21}{2^8}\frac{\Lambda_1^5 m^3}{m^2}$	3	3	$-\frac{21}{2^7}\Lambda_2^2\frac{m^6}{m^2}-\frac{421}{2^{16}}\frac{\Lambda_2^4m^8}{m^6}$
4	$\left \begin{array}{c} \frac{85}{2^9} \frac{\Lambda_1^5 m^3}{m^0} + \frac{1093}{2^{18}} \frac{\Lambda_1^8 m^4}{m^4} \\ \end{array} \right.$	4	4	$\frac{85}{2^8}\Lambda_2^2m^6+\frac{7263}{2^{17}}\frac{\Lambda_2^4m^8}{m^4}+\frac{2161}{2^{21}}\frac{\Lambda_2^6m^{10}}{m^8}+\frac{1811}{2^{30}}\frac{\Lambda_2^8m^{12}}{m^{12}}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Vanishing background fluxes for flavor group
- Same result for large and small mass.

Explicit results for \mathbb{P}^2

l	$k_1 = 1/2$	$k_1 = 3/2$	$k_1 = 5/2$	e	$k_1 = 1$	$k_{1} = 2$	$k_{1} = 3$
0	$-\frac{3}{4\sqrt{2}}\frac{m^1}{m^1}$	$-\frac{9}{4\sqrt{2}}\frac{\Lambda_1^2}{m^2}$	$-\frac{15}{4\sqrt{2}}\frac{\Lambda_1^6}{m^6}$	0	1	$\frac{\Lambda_1^3}{m^3}+\frac{15}{64}\frac{\Lambda_1^6}{m^6}$	$\frac{\Lambda_1^8}{m^8} + \frac{45}{32} \frac{\Lambda_1^{11}}{m^{11}}$
1	0	$-\frac{31}{64\sqrt{2}}\frac{\Lambda_1^5}{m^3}$	$-\frac{155}{64\sqrt{2}}\frac{\Lambda_1^9}{m^5}$	1	0	$\frac{21}{64}\frac{\Lambda_1^6}{m^4}$	$\frac{7}{8} \frac{\Lambda_1^{11}}{m^9}$
2	$-\frac{13}{64\sqrt{2}}\Lambda_1^3m$	$-\frac{39}{64\sqrt{2}}\frac{\Lambda_1^5}{m}-\frac{567}{2^{12}\sqrt{2}}\frac{\Lambda_1^8}{m^4}$	$-\frac{65}{64\sqrt{2}}\frac{\Lambda_1^9}{m^5}$	2	$\frac{19}{64}\frac{\Lambda_1^3m}{m^0}$	$\frac{19}{64}\frac{\Lambda_1^6}{m^2}$	$-\frac{19}{64}\frac{\Lambda_1^{11}}{m^7}+\frac{201}{256}\frac{\Lambda_1^{14}}{m^{10}}$
3	$\frac{113}{2^{13}\sqrt{2}}\Lambda_1^6+\frac{50175}{2^{23}\sqrt{2}}\frac{\Lambda_1^9}{m^3}$	$-\frac{867}{2^{12}\sqrt{2}}\frac{\Lambda_1^8}{m^2}$	$-\frac{1225}{2^{10}\sqrt{2}}\frac{\Lambda_1^{12}}{m^6}$	3	$-\frac{11}{2^9}\Lambda_1^6$	0	$\frac{237}{2^9} \frac{\Lambda_1^{14}}{m^8}$
4	$-\frac{879}{2^{13}\sqrt{2}}\Lambda_1^6m^2$	$-\frac{2637}{2^{13}\sqrt{2}}\Lambda_1^8 - \frac{7305}{2^{17}\sqrt{2}}\frac{\Lambda_1^{11}}{m^3}$	$-\frac{4395}{2^{13}\sqrt{2}}\frac{\Lambda_1^{12}}{m^4}$	4	$\frac{85}{2^9}\Lambda_1^6m^2$	$\frac{85}{2^9} \frac{\Lambda_1^9}{m}$	$\frac{85}{512}\frac{\Lambda_1^{14}}{m^6}+\frac{64775}{2^{17}}\frac{\Lambda_1^9}{m}$

Large mass calculation of $\Phi_{1/2}$ with background fluxes k_1 for $N_f=1$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Four-manifold K3:

- $b_2 = 22$, $b_2^+ = 3 \Rightarrow u$ -plane does *not* contribute
- spin
- non-vanishing SW-invariant SW(c) = 1 for c = 0

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Explicit results for K3

- vanishing background fluxes
- sum of 3 strong coupling singularities, u_1^* , u_2^* and u_3^*

polynomials in m

Explicit results for K3

The singularities u_1^* and u_2^* are associated to the instanton component and u_3^* to the abelian component. If we consider $Z_{0,1}[u^\ell] + Z_{0,2}[u^\ell]$,

$$\begin{split} \ell &= 0: \qquad -\frac{3}{4}\frac{\Lambda_1^4}{m^4} - \frac{5}{16}\frac{\Lambda_1^7}{m^7} - \frac{63}{512}\frac{\Lambda_1^{10}}{m^{10}} - \frac{99}{2048}\frac{\Lambda_1^{13}}{m^{13}} + \dots, \\ \ell &= 1: \qquad -\frac{\Lambda_1^4}{m^2} - \frac{7}{16}\frac{\Lambda_1^7}{m^5} - \frac{175}{1024}\frac{\Lambda_1^{10}}{m^8} - \frac{273}{4096}\frac{\Lambda_1^{13}}{m^{11}} + \dots, \\ \ell &= 2: \qquad -\frac{5}{8}\frac{\Lambda_1^7}{m^3} - \frac{245}{1024}\frac{\Lambda_1^{10}}{m^6} - \frac{189}{2048}\frac{\Lambda_1^{13}}{m^9} - \frac{4719}{131072}\frac{\Lambda_1^{16}}{m^{12}} + \dots, \end{split}$$

This reproduces "Segre numbers" for K3, matches with "universal functions"

Göttsche, Kool (2020), Göttsche (2021), Oberdieck (2022), ...

In collaboration with Kim, Moore, Tao and Zhang.

Two approaches:

1. reduction to S^1 : supersymmetric sigma model with target space the moduli space of instantons

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

2. reduction to X

Flux \boldsymbol{n}_l for global U(1) flavor symmetry \Rightarrow induces a bundle $\mathcal{L}_{\boldsymbol{n}_l} \rightarrow \mathcal{M}_k$

The partition function becomes a generating function of indices of the Dirac operator coupled to \mathcal{L}_{n_l} over \mathcal{M}_k

$$Z_{\mu}(\mathcal{R}, \boldsymbol{n}) = \sum_{k \ge 0} \operatorname{Ind}(\mathcal{D}_{\mathcal{A}^{l}}) \mathcal{R}^{4k}$$
$$= \sum_{k \ge 0} \int_{\mathcal{M}_{k}} \hat{\mathcal{A}}(\mathcal{T}\mathcal{M}_{k}) e^{\mu_{D}(n_{l})} \mathcal{R}^{4k}$$

Nekrasov (1997)

If X is complex, this can be related to the holomorphic Euler characteristic $\chi_h(X, \mathcal{L}'_{n_i})$.

If X is a toric four-manifold, we can localize with respect to the \mathbb{C}^* action, and include equivariant weights ϵ_1 and ϵ_2 .

The partition function is of the form

$$Z^{J}_{\mu}(\mathcal{R},\boldsymbol{n}) = \sum_{k} \int \frac{dh}{h} \int d\boldsymbol{a} \wedge d\bar{\boldsymbol{a}} \partial_{\bar{\boldsymbol{a}}} g^{J}_{k,\mu}(\boldsymbol{a},\bar{\boldsymbol{a}},h)$$

At the BPS locus, h = 0, $g_{k,\mu}^J(a, \bar{a}, 0)$ can be expressed in terms of Nekrasov's partition function on \mathbb{R}^4 .

Nekrasov (2006), Gottsche, Nakajima, Yoshioka (2006), Hosseini et al, Crichigno et al, Bonelli et al (2015 & 2020)

\Rightarrow Explicit equivariant wall-crossing formula and equivariant partition functions

Alternatively, we can carry out the the U-plane integral for this KK theory on X coupled to n.

$$\Phi_{\boldsymbol{\mu},\boldsymbol{n}}(\mathcal{R}) = K_U \int_{\mathcal{F}_{\mathcal{R}}} d\tau \wedge d\bar{\tau} \, \nu_{\mathcal{R}}(\tau) \, C^{\boldsymbol{n}^2} \, \Psi^J_{\boldsymbol{\mu}}(\tau,\bar{\tau},\boldsymbol{\nu}\boldsymbol{n},\bar{\boldsymbol{\nu}}\boldsymbol{n})$$

where

$$\nu_{\mathcal{R}} = \frac{\vartheta_4(\tau)^{13-b_2}}{\eta(\tau)^9} \frac{1}{U}$$
$$v = -\frac{1}{2\pi i} \partial_a \partial_{m_l} \mathcal{F}, \qquad C = \frac{\vartheta_4(\tau, v)}{\vartheta_4(\tau)}$$

The integrand can be shown to be invariant under monodromies. Leads to the same wall-crossing formula.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Center symmetry anomaly

Path integral changes sign under the 1-form symmetry T:

$$T: \quad \Phi_{\boldsymbol{\mu},\boldsymbol{n}} \mapsto (-1)^{B(2\boldsymbol{\mu},\boldsymbol{K}_X - \boldsymbol{n})} \Phi_{\boldsymbol{\mu},\boldsymbol{n}}$$

 \Rightarrow Topological terms of the mixed Chern-Simons action $S_{\text{mixed}CS}$ is only well-defined for $(-1)^{B(2\mu, K_X - n)} = 1$. In fact, the path integral vanishes otherwise, since the contributions from the *T*-images are identical up to the sign.

This anomaly has a natural counterpart for the SQM. For $\mathbf{n} = 0$, this theory is anomalous if \mathcal{M}_k is not a spin manifold since the fermion determinant is then not globally well-defined. We claim that for $(-1)^{B(2\mu,K_X)} = -1$, \mathcal{M}_k is not a spin manifold, and that for $(-1)^{B(2\mu,K_X-\mathbf{n})} = 1$, the fermions are coupled to a suitable Spin^c structure such that the anomaly is absent.

Indeed, $(-1)^{B(2\mu, K_X)} = \pm 1$ determines whether \mathcal{M}_k is spin or not. Hopkins, Freed, Moore (to appear) For the evaluation, we first expand in \mathcal{R} and then determine the q^0 term. For example for $X = \mathbb{P}^2$, we obtain

$$\Phi_{1/2,n}(\mathcal{R}) = \begin{cases} 1 + O(\mathcal{R}^{13}), & n = \pm 1, \\ 1 + \mathcal{R}^4 + \mathcal{R}^8 + \mathcal{R}^{12} + \dots, & n = \pm 3, \\ 1 + 6\mathcal{R}^4 + 21\mathcal{R}^8 + 56\mathcal{R}^{12} + \dots, & n = \pm 5, \\ 1 + 21\mathcal{R}^4 + 210\mathcal{R}^8 + 1401\mathcal{R}^{12} + \dots, & n = \pm 7, \\ 1 + 55\mathcal{R}^4 + 1310\mathcal{R}^8 + 19432\mathcal{R}^{12}\dots, & n = \pm 9. \end{cases}$$

and 0 for even *n*. In agreement with Göttsche, Nakajima, Yoshioka (2006).

Explicit results for \mathbb{P}^2

$$\Phi_{0,n}(\mathcal{R}) = \begin{cases} \frac{15}{2}\mathcal{R} - 21\mathcal{R}^5 - 56\mathcal{R}^9 - 126\mathcal{R}^{13} \dots, & n = -5, \\ 6\mathcal{R} - 6\mathcal{R}^5 - 10\mathcal{R}^9 - 15\mathcal{R}^{13} + \dots, & n = -4, \\ \frac{9}{2}\mathcal{R} - \mathcal{R}^5 - \mathcal{R}^9 - \mathcal{R}^{13} + \dots, & n = -3, \\ 3\mathcal{R} + O(\mathcal{R}^{17}), & n = -2, \\ \frac{3}{2}\mathcal{R} + O(\mathcal{R}^{17}), & n = -1, \\ O(\mathcal{R}^{17}), & n = 0, \\ -\frac{3}{2}\mathcal{R} + O(\mathcal{R}^{17}), & n = 1, \\ -3\mathcal{R} + O(\mathcal{R}^{17}), & n = 2, \\ -\frac{9}{2}\mathcal{R} + \mathcal{R}^5 + \mathcal{R}^9 + \mathcal{R}^{13} + \dots, & n = 3, \\ -6\mathcal{R} + 6\mathcal{R}^5 + 10\mathcal{R}^9 + 15\mathcal{R}^{13} + \dots, & n = 4, \\ -\frac{15}{2}\mathcal{R} + 21\mathcal{R}^5 + 56\mathcal{R}^9 + 126\mathcal{R}^{13} + \dots, & n = 6, \end{cases}$$

In agreement with GNY, except for $O(\mathcal{R})$ coefficient. We attribute this to reducible connections or strictly semi-stable bundles. Similarly to before, also SW contributions can be determined using wall-crossing. In this way we give a physical derivation of results by Göttsche, Kool, Williams (2019) for the K-theoretic Donaldson invariants of X

$$\frac{2^{2-\chi_{h}(X)+K_{X}^{2}}}{(1-\mathcal{R}^{2})^{(\boldsymbol{n}-K_{X})^{2}/2+\chi_{h}}}\sum_{c}\mathsf{SW}(c)(-1)^{\mu(c+K_{X})}\left(\frac{1+\mathcal{R}}{1-\mathcal{R}}\right)^{c(K_{X}-\boldsymbol{n})/2}$$

with K_X the canonical class of X, and SW(c) the Seiberg-Witten invariant for the basic class c.

Conclusion

- We have explicitly evaluated and analyzed the partition function & correlators of
 - 1. the $\mathcal{N} = 2 SU(2)$ theory with fundamental matter.
 - 2. 5d $\mathcal{N} = 1$ theory on $X \times S^1$, which gives rise to K-theoretic Donaldson invariants
- New results on Coulomb branch geometries, gauge theoretic moduli spaces and their invariants
- Analysis motivates the study of more general theories

Thank you!