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This talk is mostly based on

“Topological Twists of Massive SQCD” arXiv:2206.08943 +
2312.11616 with Johannes Aspman and Elias Furrer,

and “Path Integral Derivations of K-Theoretic Donaldson
Invariants” to appear with Heeyeon Kim, Greg Moore, Runkai Tao,
and Xinyu Zhang.



Correlation functions

Correlation functions are at heart of quantum field theory:

⟨O1(x1)O2(x2) . . .On(xn)⟩ = ∫ [DX]O1(x1)O2(x2) . . .On(xn) e
−S(X)

Large effort to include all perturbative and non-perturbative
effects, and to increase n.

Motivation to study theories where such effects can be included.



Topologically twisted Yang-Mills theories

Path integrals and correlation functions can be evaluated exactly
for topologically twisted N = 2 and N = 4 Yang-Mills theories in
many cases. These observables feature many crucial
non-perturbative phenomena in Yang-Mills theory.

Such results provide at the same time deep connections to the
geometry of four-manifolds and instanton moduli spaces, as well as
to analytic number theory.

The correlation functions involve topological invariants of
four-manifolds, such as Donaldson-Witten invariants,
Seiberg-Witten invariants, Vafa-Witten invariants, Segre numbers
and K-theoretic Donaldson invariants.



On a compact four-manifold X , the path integral is a functional
integral over all fields of the topologically twisted theory. For
manifolds with b+2 (X ) = 1, there is a contribution from the
Coulomb branch of the theory.

⇒ analysis of Coulomb branches and effective couplings



Pure N = 2, SU(2) Yang-Mills

The gauge group is spontaneously broken by a vev of the vector
multiplet scalar φ,

φ = (
a 0
0 −a

)

with (classical) gauge invariant order parameter

u = ⟨Trφ2
⟩ = 2a2

The perturbative part of the effective coupling reads

τ =
θ

4π
+

4πi

g2
∼

4i

π
log(a/Λ) + . . .



Pure N = 2, SU(2) Yang-Mills

SW curve provides full solution:

y2
= x3

− u x2
+

1

4
Λ4

0x , a = ∫
A
λSW

Seiberg, Witten (1994)

⇒ Expresses u in terms of Jacobi theta series:

u(τ)

Λ2
0

= −

1

2

ϑ2(τ)
4
+ ϑ3(τ)

4

ϑ2(τ)2ϑ3(τ)2

= −

1

8
(q−1/4

+ 20q1/4
− 62q3/4

+ 216q5/4
+O(q7/4

)),

with q = e2πiτ and ϑj Jacobi theta series.
Matone (1996), Nahm (1996),. . .



Theory has two strong coupling singularities for u = ±Λ2
0, where a

monopole and dyon become massless.

Monodromies around the singularities generate the group Γ0
(4),

which leave u invariant

u(
aτ + b

cτ + d
) = u(τ) for (

a b
c d

) ∈ Γ0
(4)

Γ0
(4) = {(

a b
c d

) ∈ SL2(Z) ∶ b = 0 mod 4}



Fundamental domain for pure N = 2
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Left: fundamental domain for H/Γ0
(4)

Right: u-plane, and its partitioning given by the images of FI in
H/Γ0

(4)
Aspman, Furrer, JM (2021)



The theory with Nf = 1

Include one hypermultiplet in fundamental representation of SU(2)

Global symmetry group: (Spin(4) × SU(2)R ×U(1)(f ))/Z2

Effective coupling: The perturbative contributions read

τ ∼
4i

π
log(a/Λ) −

i

2π
log((a +m)/Λ) −

i

2π
log((a −m)/Λ) + . . .

Massless theory has three strong coupling singularities.
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The theory with Nf = 1: u

u for this theory reads:

u(τ)

Λ2
1

= −

3

2
7
3

√

E4(τ)

3
√

E4(τ)
3
2 − E6(τ)

= −

1

16
(q−1/3

+ 104q2/3
− 7396q5/3

+O(q8/3
))

Nahm (1996) ⇒ thus u is expressed in terms of square roots of modular
forms, which are in general not modular forms.
One can verify that it is left invariant under the “path”
transformations.



Sextic polynomial for u

To determine u, we bring the SW curve to Weierstrass form

y2
= 4x3

− g2 x − g3

This gives rise to the polynomial,

PNf
(X ) = (g2(X ,m,Λ)

3
− 27g3(X ,m,Λ)

2
) j − 123g2(X ,m,Λ)

3

= a6 X
6
+ a5 X

5
+ . . . + a1 X + a0,

where the coefficients ai = ai(m,Λ, j) are polynomial functions of
m, Λ, and the j function, ai(m,Λ, j) ∈ C[m,Λ, j].

The polynomials can thus be viewed as polynomials over the field
C[m,Λ, j]. In general no explicit solution X available. X can be
considered as a single-valued function on a 6-fold branched cover
of H/SL2(Z). The branch points can occur if two or more
(j-dependent) roots of PNf

coincide for a specific value of jbp of j .



Nf = 1 continued: Mass m > 0

Increasing the mass m > 0, the branch points move to the interior
such that we get branch cuts in the fundamental domain:
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Argyres-Douglas mass mAD

For the Argyres-Douglas mass mAD =
3
4 Λ1, two mutually non-local

singularities collide in the u-plane, and the theory becomes
superconformal. Within F1, the two branch points collide for this
mass at eπi/3

+ 1, and annihilate each other. The two strong
coupling regions are disconnected from the other four. The
resulting domain is a domain for Γ0

(3).
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Mass m > mAD

Beyond mAD , the branch points return. They follow the following
path:

−1 0 1 2 3

m = 0mADm = 0

m → ∞

m = ∞



Decoupling of hypermultiplet: cutting and gluing

In this way, we can see that the hypermultiplet smoothly
decouples, returning to the one for Nf = 0
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5d theory on R4
× S1

Another important theory is the 5-dimensional N = 1 gauge theory
theory compactified on a circle of radius R. The theory in 4d
includes a full KK tower of states.
Work in progress together with Kim, Moore, Tao and Zhang

Bosonic fields: gauge field Am, m = 0, . . . ,4, real scalar σ

Global symmetries: (Spin(4) × SU(2)R)/Z2 ×U(1)(I)

The current for the U(1)(I) symmetry is j = ∗ 1
8π2 TrF ∧ F and the

charged particles are instanton particles.
Seiberg (1996); Morrison, Seiberg, Intrilligator (1996),. . .

1-form center symmetry: shift of Am by a ZN -valued flat
connection for SU(N)



5d action

SUSY action:

SYM =

1

g2
5d
∫ dx5 Tr [

1

2
FmnF

mn
+ (Dmσ)

2
+ . . . ]

Chern-Simons term:

SCS = −
iκ

24π2 ∫X×S1
Tr[A ∧ F ∧ F ] + . . .

Tachikawa (2004)

Weakly gauge U(1)(I) by introducing “frozen” vector multiplet
(AI

m, σ
I
). Mixed CS-term

Smixed CS = ∫
X×S1

iF I
∧Tr[AdA +

2

3
A3

] −

1

8π2
σI Tr[F ∧ ∗F ] + . . .

Baulieu, Losev, Nekrasov (1997)

Gives rise to standard kinetic terms in 4d with σI
= −

8π2

g2
5d

We include a background flux n = [F I
/2π] ∈ H2

(X ,Z) for the
topological global U(1)(I) symmetry.



4d KK theory on R4
× S1

Parameters: 4d scale Λ, and S1 radius R

Dimensionless parameter: R = ΛR = e−8π2R/g2
5d+iθ with θ the

holonomy of AI

Electric BPS particles for gauge group SU(2):

● W -bosons: Za = 2a = 2
R ∫S1(σ + iA5)dx

5

● instanton particle: ZI =
1
R log(R4

)

● unit momentum around S1: ZK =
2πi
R

Prepotential

F(a,R,Λ) =

2

R2
(Li3(e

−Ra
− ζ(3))) + a2

(log(R) −

πi

2
) +O(R)



Order parameter

The Coulomb branch order parameter is the vev of the Wilson line
operator

U = ⟨Tr P exp(∫
S1

(σ + iA5)dx5)⟩ = eRa
+ e−Ra

+O(R)

Action of 1-form symmetry T :

T ∶ {
a ↦ a + πi

R
U ↦ −U



5d SU(2) theory on R4
× S1

SW curve for κ = 0:

Σ ∶ Y 2
= P(X )

2
− 4X 2

R
4, P(X ) = X 2

+UX + 1,

Nekrasov (1996); Ganor, Morrison, Seiberg (1996); Göttsche, Yoshioka, Nakajima (2006),. . .

Four singularities: U = ±2(R2
± 1)

U -plane

U = 0 U1 U2U3U4

M∞ = T0
∞Tπ

∞ T0
∞

Tπ
∞

M12M34

M1



Using the theory of elliptic curves, one can demonstrate

U2
= −8R2u + 4R4

+ 4,

with

u(τ) =
ϑ2(τ)

4
+ ϑ3(τ)

4

2ϑ2(τ)2 ϑ3(τ)2
, R = RΛ

with τ the complex structure of Σ



5d SU(2) theory on R4
× S1

U(τ) is a function on the double cover of the pure SU(2) domain
(H/Γ0

(4)). It includes a branch point and cuts:
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We can rearrange the domain to avoid cuts at infinity.

−1 0 1 2 3 4 5 6 7 8

F TF

SF

In the limit R→ 1 the branch points disappear and the U is a
modular form for (a congruence of) Γ0

(8).
See also Closset, Magureanu (2021)



Four-manifolds and lattices

H2
(X ,Z) together with the intersection form

B(k1,k2) = ∫
X

k1 ∧ k2, k1,2 ∈ H
2
(X ,Z)

gives rise to an integral, uni-modular lattice L (the image of
H2

(X ,Z) in H2
(X ,R))

The lattice has signature (b+2 ,b
−
2 ). For non-vanishing correlators,

b+2 + b1 =odd. We restrict to b1 = 0.

For b+2 = 1, let J be the normalized generator of the unique
self-dual direction in H2

(X ,R). It provides the projection of k ∈ L
to (L⊗R)

+,
k+ = B(k , J) J



Topological twisting

Assume X is spin, such that the chiral SU(2) spin bundles are
well-defined.

Donaldson-Witten twist: Replace SU(2)+ representation by that
of the diagonally embedded subgroup in SU(2)+ × SU(2)R

⇒ φ and Aµ remain a vector and scalar, but hypermultiplet scalars
(Q, Q̃†

) become space-time spinors (Mα̇, M̄α̇)



Topological twisting

Spinors Mα̇ are problematic for the generalization to non-spin X .
We cure this by coupling the hypermultiplet to the Spinc line
bundle L, such that

W +
= S+ ⊗L1/2

is a well-defined Spinc bundle

c1(L) = w̄2(X ) + w̄2(E) + 2L

Aspman, Furrer, JM (2022)

For s canonically determined by an ACS

W +
≃ Λ0

⊕ Λ0,2, W −
≃ Λ0,1

For Spinc structures for fundamental matter: Hyun, Park, Park (1995), Labastida, Marino (1997)

For Spinc structures for adjoint matter: JM, Moore (2021)

More generally Moore, Saxena, Singh (2024)



Relation to Donaldson invariants

Examples of observables in the Q-cohomology of DW-theory are:

● Point observable:
O
(0)

(p) = u(p),

● Surface observable:

O
(2)

(x) = I−(x) =
1

4π2 ∫x
Tr[1

8ψ ∧ ψ −
1√
2
φF ] , x ∈ H2(M,Z)

These observables correspond to differential forms on the moduli
space, a 4-form ωu and a 2-form ωI (x).

Provide physical understanding for the Donaldson invariants of a
compact smooth four-manifold M:

⟨eO
(0)(p)+O(2)(x)

⟩ = ∑

`,n≥0

D`,n p
`xn,

where the D`,n are Donaldson invariants,

D`,np
`xn

= ∫Mk

ωu(p)
`
∧ ωI (x)n

Witten (1988)



Evaluation of correlation functions

● For compact four-manifolds, the path integral includes
integral over u:

⟨O⟩ = ⟨O⟩u−plane + ⟨O⟩SW

where ⟨O⟩SW has δ-function support on the cusps u = ±1

● ⟨O⟩u−plane =∶ ΦJ
µ[O] is non-vanishing only for b+2 ≤ 1. Such

four-manifolds provide a testing ground for the analysis of
Coulomb branches.

● For b+2 = 1, the path integral reduces to an integral over zero
modes Aµ, φ0 = a, η0, ψ0, χ0.

Witten (1995); Moore, Witten (1997); Losev, Nekrasov, Shatashvili (1997)



Partition function

Assume X has in addition b1 = 0 ⇒ no ψ zero modes

Partition function for theory on X :

ΦJ
µ = ∑

fluxes
∫ da dā dη0 dχ0 A(u)χ(X)B(u)σ(X) e−∫X L0

= ∫FT

dτ ∧ d τ̄ ν(τ)ΨJ
µ(τ, τ̄)

with (q = e2πiτ )

● ν(τ) = da
dτ A(u)χ(M)B(u)σ(M) = q−

3
8 + . . .

● Sum over fluxes:

ΨJ
µ(τ, τ̄) =

1
√
y
∑

k∈L+µ
B(k , J)q−k2

−/2 q̄k2
+/2

where L = H2
(X ,Z)/torsion with bilinear form B(⋅, ⋅), J is the

period point of M, µ ∈ L/2 is the ’t Hooft flux



Efficient evaluation using mock modular forms for all X with b+2 = 1
Korpas, JM (2017); Korpas, JM, Moore, Nidaiev (2019); JM, Moore (2021)

Construction of a suitable anti-derivative:

∂F̂ (τ, τ̄)

∂τ
= ΨJ

µ(τ, τ̄),

Then

ΦJ
µ[O] = [O ν(τ)F (τ)]q0 + contributions from other cusps,

with F (τ) = ∑n c(n)q
n the holomorphic part of F̂ (τ, τ̄)



SW contributions

General form of partition function:

Z J
µ = ΦJ

µ +

2+Nf

∑

j=1

Z J
SW ,j ,µ

with
Z J

SW ,j ,µ = A
χ
j B

σ
j ∑

c

SW (c ; J) Ec2

j Fµ(c)

The terms on the rhs undergo wall-crossing upon varying J.
Wall-crossing from the singularity uj of ΦJ

µ is absorbed by the

wall-crossing of Z J
SW ,j ,µ:

[ΦJ+

µ −ΦJ−

µ ]
j
= Z J−

SW ,j ,µ − Z J+

SW ,j ,µ

This makes it possible to derive Z J
SW ,j ,µ in terms SW(c ; J) with c

the IR Spinc structure. Moreover, it is possible to extend the
results to manifolds with b+2 > 1.



UV SQCD on X

The Q-fixed equations are the non-Abelian Seiberg-Witten
equations:

(F a
α̇β̇

) +

i

2

Nf

∑

j=1

M̄ j
α̇T

aM j

β̇
= 0

/DM j
= 0

Witten (1994); Labastida, Marino (1995); Labastida, Lozano (1998),. . .

Equations are invariant under U(1)(f ) symmetry: Mα̇ → e iϕMα̇

Mα̇ is a spinor ⇒ X is spin, or coupling to a Spinc structure s
required.



Fixed point locus

Moduli space of solutions MQ
k

The U(1)(f ) fixed point locus consists of two components:

● Instanton component Mi
k : Mα̇ = 0 and F+ = 0

● Abelian component Ma
k : F diagonal, and Mα̇ strictly upper or

lower triangular



Then a correlator ⟨O⟩ reduces to an integral of differential forms
M

Q :
⟨O⟩ = ∑

k

Λvdim(MQ
k )
∫MQ

k

Eul(Cok( /D))ωO

with Eul(Cok( /D)) the equivariant Euler class of the cokernel
bundle. This can be expanded in terms of Chern classes c` of the
index bundle Wk

⟨O⟩ = ∑

k

Λvdim(MQ
k
)m−rk(Wk)

× [∫Mi
k

∑

`

c`
m`

ωO + ∫Ma
k

∑

`

c`
m`

ωO] ,

Losev, Nekrasov, Shatashvili (1998),. . . In the m →∞ limit, only ` = 0 contributes,
while in the limit m → 0 only ctop contributes
Mathematicians (Göttsche, Kool,. . . ) refer to these intersection
numbers as “Segre numbers”.



Explicit results for P2

Four-manifold P2:

● b2 = b+2 = 1

● non-spin

● SW-invariants vanish ⇒ u-plane gives full result



Explicit results for P2

Aspman, Furrer, JM analyzed topological correlators of these
theories with generic masses.

● Vanishing background fluxes for flavor group

● Same result for large and small mass.



Explicit results for P2

Large mass calculation of Φ1/2 with background fluxes k1 for
Nf = 1



Explicit results for K3

Four-manifold K3:

● b2 = 22, b+2 = 3 ⇒ u-plane does not contribute

● spin

● non-vanishing SW-invariant SW (c) = 1 for c = 0



Explicit results for K3

● vanishing background fluxes

● sum of 3 strong coupling singularities, u∗1 , u∗2 and u∗3
● polynomials in m



Explicit results for K3

The singularities u∗1 and u∗2 are associated to the instanton
component and u∗3 to the abelian component. If we consider
Z0,1[u

`
] + Z0,2[u

`
],

` = 0 ∶ −

3

4

Λ4
1

m4
−

5

16

Λ7
1

m7
−

63

512

Λ10
1

m10
−

99

2048

Λ13
1

m13
+ . . . ,

` = 1 ∶ −

Λ4
1

m2
−

7

16

Λ7
1

m5
−

175

1024

Λ10
1

m8
−

273

4096

Λ13
1

m11
+ . . . ,

` = 2 ∶ −

5

8

Λ7
1

m3
−

245

1024

Λ10
1

m6
−

189

2048

Λ13
1

m9
−

4719

131072

Λ16
1

m12
+ . . . ,

This reproduces “Segre numbers” for K3, matches with “universal
functions”
Göttsche, Kool (2020), Göttsche (2021), Oberdieck (2022), . . .



Analysis for 5d theory

In collaboration with Kim, Moore, Tao and Zhang.

Two approaches:

1. reduction to S1: supersymmetric sigma model with target
space the moduli space of instantons

2. reduction to X



Flux nI for global U(1) flavor symmetry ⇒ induces a bundle
LnI

→Mk

The partition function becomes a generating function of indices of
the Dirac operator coupled to LnI

over Mk

Zµ(R,n) = ∑
k≥0

Ind( /DAI )R
4k

= ∑

k≥0
∫Mk

Â(TMk) e
µD(nI )

R
4k

Nekrasov (1997)

If X is complex, this can be related to the holomorphic Euler
characteristic χh(X ,L

′
nI
).



Localization in supersymmetric quantum mechanics

If X is a toric four-manifold, we can localize with respect to the C∗

action, and include equivariant weights ε1 and ε2.

The partition function is of the form

Z J
µ(R,n) = ∑

k
∫

dh

h ∫
da ∧ dā∂āg

J
k,µ(a, ā,h)

At the BPS locus, h = 0, gJ
k,µ(a, ā,0) can be expressed in terms of

Nekrasov’s partition function on R4.
Nekrasov (2006), Gottsche, Nakajima, Yoshioka (2006), Hosseini et al, Crichigno et al, Bonelli et al (2015 & 2020)

⇒ Explicit equivariant wall-crossing formula and equivariant
partition functions



Alternatively, we can carry out the the U-plane integral for this KK
theory on X coupled to n.

Φµ,n(R) = KU ∫FR
dτ ∧ d τ̄ νR(τ)C

n2

ΨJ
µ(τ, τ̄ , vn, v̄n)

where

νR =

ϑ4(τ)
13−b2

η(τ)9

1

U

v = −

1

2πi
∂a∂mI

F , C =

ϑ4(τ, v)

ϑ4(τ)

The integrand can be shown to be invariant under monodromies.
Leads to the same wall-crossing formula.



Center symmetry anomaly

Path integral changes sign under the 1-form symmetry T :

T ∶ Φµ,n ↦ (−1)B(2µ,KX−n)Φµ,n

⇒ Topological terms of the mixed Chern-Simons action SmixedCS is
only well-defined for (−1)B(2µ,KX−n)

= 1. In fact, the path integral
vanishes otherwise, since the contributions from the T -images are
identical up to the sign.

This anomaly has a natural counterpart for the SQM. For n = 0,
this theory is anomalous if Mk is not a spin manifold since the
fermion determinant is then not globally well-defined. We claim
that for (−1)B(2µ,KX ) = −1, Mk is not a spin manifold, and that
for (−1)B(2µ,KX−n)

= 1, the fermions are coupled to a suitable
Spinc structure such that the anomaly is absent.

Indeed, (−1)B(2µ,KX ) = ±1 determines whether Mk is spin or not.
Hopkins, Freed, Moore (to appear)



Explicit results for P2

For the evaluation, we first expand in R and then determine the q0

term. For example for X = P2, we obtain

Φ1/2,n(R) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪
⎩

1 +O(R
13
), n = ±1,

1 +R4
+R

8
+R

12
+ . . . , n = ±3,

1 + 6R4
+ 21R8

+ 56R12
+ . . . , n = ±5,

1 + 21R4
+ 210R8

+ 1401R12
+ . . . , n = ±7,

1 + 55R4
+ 1310R8

+ 19432R12 . . . , n = ±9.

and 0 for even n. In agreement with Göttsche, Nakajima, Yoshioka
(2006).



Explicit results for P2

Φ0,n(R) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

15
2 R− 21R5

− 56R9
− 126R13 . . . , n = −5,

6R− 6R5
− 10R9

− 15R13
+ . . . , n = −4,

9
2R−R

5
−R

9
−R

13
+ . . . , n = −3,

3R+O(R
17
), n = −2,

3
2R+O(R

17
), n = −1,

O(R
17
), n = 0,

−
3
2R+O(R

17
), n = 1,

−3R+O(R
17
), n = 2,

−
9
2R+R

5
+R

9
+R

13
+ . . . , n = 3,

−6R+ 6R5
+ 10R9

+ 15R13
+ . . . , n = 4,

−
15
2 R+ 21R5

+ 56R9
+ 126R13

+ . . . , n = 5,
−9R+ 56R5

+ 230R9
+ 770R13

+ . . . , n = 6,

In agreement with GNY, except for O(R) coefficient. We attribute
this to reducible connections or strictly semi-stable bundles.



Explicit results for X with b+2 (X ) ≥ 3

Similarly to before, also SW contributions can be determined using
wall-crossing. In this way we give a physical derivation of results by
Göttsche, Kool, Williams (2019) for the K-theoretic Donaldson
invariants of X

22−χh(X)+K 2
X

(1 −R2
)
(n−KX )2/2+χh

∑

c

SW(c) (−1)µ (c+KX )
(

1 +R

1 −R
)

c(KX−n)/2

with KX the canonical class of X , and SW(c) the Seiberg-Witten
invariant for the basic class c .



Conclusion

● We have explicitly evaluated and analyzed the partition
function & correlators of

1. the N = 2 SU(2) theory with fundamental matter.
2. 5d N = 1 theory on X × S1, which gives rise to K-theoretic

Donaldson invariants

● New results on Coulomb branch geometries, gauge theoretic
moduli spaces and their invariants

● Analysis motivates the study of more general theories

Thank you!


