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Structure of the talk.

1. History and background

2. Geometric formulation of Virasoro constraints and the main claim

3. Reformulation in terms of vertex algebras
3.1 Joyce’s construction of VA’s
3.2 The conformal element
3.3 Virasoro constraints make virtual fundamental classes into physical states

4. Main results for quivers and varieties



Gromov–Witten side

1. X - smooth projective variety, β ∈ H2(X ) effective

2. Consider Mg,n(X , β) parametrizing stable maps (C , f , x1, . . . , xn)

with f : C → X such that f∗([C ]) = β ∈ H2(X ).

3. Line bundles Li → Mg,n given by T∗
C |xi at each C :

4. Denote the powers of the first Chern classes by τd := ψd
i := c1(Li )

d
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Gromov–Witten potential

1. Fix a basis B = {v} ⊂ H∗(X ) with 1 ∈ B for the generator of H0(X ) and define
the classes 1

τk (v) = (ψj )
kev∗j (v) , for all k ≥ 0, v ∈ B .

2. Consider the Gromov–Witten potential

FX (t⃗) =
∑

g≥0
β∈H2(X )

〈
exp

[∑
k≥0
v∈B

τk (v)tk,v

]〉X

β,g
qβλ2g−2

where 〈
−

〉X

g,β
=

∑
n≥0

∫
[
Mg,n(X ,β)

]vir (−) .

It collects the invariants〈
τk1 (v1)

a1τk2 (v2)
a2 · · · τkl (vl )

al ⟩Xβ,g =

∫
[
Mg,n(X ,β)

]vir τk1 (v1)
a1τk2 (v2)

a2 · · · τkl (vl )
al

under the condition that
∑

i ai = n.

1Here evj is the evaluation map for the j ’th marked point.
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Virasoro constraints

1. Eguchi–Hori–Xiong (97’) and Katz (presented by Eguchi–Jinzenji–Xiong) defined
Virasoro operators Lk acting on CJtk,v , k ≥ 0, v ∈ BK as second order differential
operators.

2. The name comes from the relation

[Lm, Ln] = (m − n)Lm+n .

3. EHX conjectured that

Lk exp
[
−

1

2
FX (t⃗)

]
= 0 , k ≥ −1 .

Example
The case when X = pt is equivalent to Witten’s conjecture (see Dijkgraaf, Verlinde,
Verlinde (90’)). In this case, Lk = Tk + Rk where

Tk =
λ2

2

k∑
m=1

∂2

∂tm−1∂tk−m
, Rk =

∞∑
m=0

(m +
1

2
)tm

∂

∂tm+k
,

and T0 = 1
16
, T−1 = 1

8
λ−2t20 .
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History of proofs

1. Witten’s conjecture was proved famously by Kontsevich (92’).

2. Later it was proved differently by Okounkov–Pandharipande(01’) and by
Mirzakhani (07’).

3. Virasoro constraints have been proved by Okounkov–Pandharipande (03’) for
curves X = C and by Givental (01’) and Teleman (12’) for toric X (more
generally X with semisimple quantum cohomology). Givental’s formalism uses
Kontsevich’s result for Mg,n, equivariant localization, and cohomological field
theories.
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Transposing to the sheaf side

1. A rather long roundabout proof:

GW Virasoro

for torics

Witten’s

conjecture

Virasoro

for PT pairs
constraints

Virasoro

S a surface
for Hilbn(S)

CohFT

Virtual equivariant
localization

GW/PT correspondence

by OOP

Dimension
reduction

Universality

2. Virasoro constraints for toric 3-folds X were transported to stationary
descendents of PT stable pairs using the GW–PT correspondence by
Moreira–Oblomkov–Okounkov–Pandharipande (20’). Dimensional reduction was
used to prove these constraints for Hilbn(S).

3. Using quivers, I will give a more direct proof.
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Virasoro constraints for linear theories

1. Main differences of sheaf constraints compared to GW constraints:

1.1 Linearity of sheaf theory
1.2 Stated for a single fixed moduli space
1.3 Have a larger choice of stability conditions and classes

2. Linearity + obstruction theories “ =⇒ ” Virasoro constraints

3. Fixing a stability condition σ and a class α, e.g. a dimension vector or a Chern
character, Virasoro constraints are stated for each virtual fundamental class
[Mσ

α ]
vir separately (Mσ

α parametrizes σ-stable objects in class α)

4. I will just write M when σ, α are not important. Assume that M is fine for now.
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Quivers and sheaves

1. Today, mainly categories of quiver representations and sheaves. Afterwards,
everyone in the room should be able to conjecture and maybe prove Virasoro
constraints for any linear category with reasonable virtual fundamental classes.

2. Some examples to see how much variety the theory offers:

Without framing With framing

Sheaves

Gieseker stable torsion-free

sheaves on curves or surfaces,

dimension 1 sheaves

on surfaces, Fano 3-folds, CY fourfolds2

Bradlow pairs

on curves or surfaces,

DT/PT pairs on ≤ 4-folds,

Quot schemes

Quivers
with relations

(quasi-smooth, CY4)

Bridgeland stable

quiver representations

Framed quiver representations:

e.g., Grassmanians and Flag varieties

2This case is not written anywhere, but it follows the same argument once my proof of wall-crossing is out.
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Quivers with relations and frozen vertices

1. The main focus will be quivers Q = (V ,E) with frozen vertices F and an ideal of
relations R generated by a (minimal) R

2. Quasi-smooth is equivalent to having virtual fundamental classes for the
corresponding quiver moduli.

3. Fix a dimension vector d and a stability condition σ giving Mσ
d
.

4. Examples:

d∞ = 1

d1 d2 d3 d4 d5 d6

n

∞
Q = ×n1

×n2

×n3
×n4

×n5

×n6

Flag

(xi yk ) ◦ xj = (xj yk ) ◦ xi , (xk yi ) ◦ yj = (xk yj ) ◦ yi

Db(P1 × P1)
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Defining Virasoro constraints for a category A

Quivers Sheaves

1. Choose a basis B ⊂ Λ(A) := K0
top(A,C)⊕K1

top(A,C).
V ⊂ CV B ⊂ H∗(X ,C)

2. The descendent algebras: DA = SymJτi (v), i > 0, v ∈ BK
(τHi (v) with degrees depending on the Hodge grading for X )
Lk = Tk + Rk for k ≥ −1 will be differential operators on DA.

3. The realization map: DA → H∗(M)
depends on a choice of a universal object.

τi (v) 7→ chi (Uv )
Uv is a universal vector

space at v

τHi (v) = π2 ,∗
(
π∗
1 (v̄)chi+p(G)

)
G universal sheaf on X ×M

v ∈ Hp,q(X ), v its Poincaré dual

4. Euler pairing χ : Λ(A)× Λ(A) → C

χ(v ,w) = δv,w − Av,w + Sv,w χ(v ,w) =
∫
X v∨ · w · td(X )
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4. Euler pairing χ : Λ(A)× Λ(A) → C

χ(v ,w) = δv,w − Av,w + Sv,w χ(v ,w) =
∫
X v∨ · w · td(X )



Defining Virasoro constraints for a category A

Quivers Sheaves

1. Choose a basis B ⊂ Λ(A) := K0
top(A,C)⊕K1

top(A,C).
V ⊂ CV B ⊂ H∗(X ,C)

2. The descendent algebras: DA = SymJτi (v), i > 0, v ∈ BK
(τHi (v) with degrees depending on the Hodge grading for X )

Lk = Tk + Rk for k ≥ −1 will be differential operators on DA.

3. The realization map: DA → H∗(M)
depends on a choice of a universal object.

τi (v) 7→ chi (Uv )
Uv is a universal vector

space at v

τHi (v) = π2 ,∗
(
π∗
1 (v̄)chi+p(G)

)
G universal sheaf on X ×M

v ∈ Hp,q(X ), v its Poincaré dual
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)
G universal sheaf on X ×M

v ∈ Hp,q(X ), v its Poincaré dual

4. Euler pairing χ : Λ(A)× Λ(A) → C

χ(v ,w) = δv,w − Av,w + Sv,w χ(v ,w) =
∫
X v∨ · w · td(X )
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Virasoro operators

5. Quadratic terms from the diagonal pushforward:
τiτj

(
∆∗td(A)

)
:=

∑
v,w∈B χ(v ,w)τi (w)τj (v) .

6. Virasoro operators Lk = Tk + Rk : Rk are always the same

Rk

(
τ
(H)
i (v)

)
= i (k+1)τ

(H)
i+k (v)

where i (k+1) = i(i + 1) · · · (i + k) is the rising factorial.

The operators Tk are related to T vir.
ch

(
T vir

)
= −

∑
i,j (−1)iτiτj

(
∆∗td(A)

)
(+1)

Tk =
∑

i+j=k i!j!τiτj
(
∆∗td(A)

)
(+1)

When K1
top(X ) ̸= 0, set χH(v ,w) = (−1)p

∫
X v · w · td(X ) and

τHi τ
H
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Defining Virasoro constraints

1. The operators Lk satisfy the dual Virasoro commutation relations

[Lm, Ln] = (n −m)Lm+n .

2. Näıve guess (not quite correct): If M is fine and carries a virtual fundamental
class [M]vir, then ∫

[M]vir
Lk (D) = 0 for k ≥ −1,D ∈ DA .

3. Instead, we need to make up for the non-uniqueness of the choice of a universal
object. Use another operator Sk compatible with the universal object. It can also
absorb fixing determinants of sheaves.

Claim (B.–Lim–Moreira(22’), B.(23’))
Let M be a fine moduli space of stable objects with a virtual fundamental class, then
it often satisfies Virasoro constraints∫

[M]vir
(Lk + Sk )(D) = 0 for k ≥ 0,D ∈ DA .
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Weiht zero Virasoro constraints

1. To avoid talking about Sk , we introduced the weight-zero operator

Lwt=0 =
∑
n≥−1

(−1)n

(n + 1)!
Ln ◦ Rn+1

−1 .

Lemma (BLM)
The previous claim is equivalent to∫

[M]vir
Lwt=0(D) = 0 for D ∈ DA .

2. This formulation a) is independent of the choice of the universal object when it
exists, b) can be defined formally without the universal object.
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Flag varieties
1. The partial flag variety Flag(d1, d2, . . . , dl ) for d1 > d2 · · · dl−1 > dl parametrizes

sequences of quotients

Cd1 ↠ Cd2 ↠ . . .↠ Cdl−1 ↠ Cdl .

and it carries the universal quotients Qv for v = 2, . . . , l .

2. Setting n1 = d1 and nv = 0 for v = 2, . . . , l in
d∞ = 1

d1 d2 d3 d4 d5 d6

×n1
×n2

×n3
×n4

×n5

×n6

and choosing the right stability condition,obtain the flag variety. Also identify
Qv = Uv .

3. The only non-constant descendents are τi (v) = chi (Qv ) for v ̸= ∞, 1. Then

Tk =
∑
i+j=k
v≥2

τi (v)
(
τj (v)− τj (v + 1)

)
− d1τk (2) ,

and Rk only acts on these descendents.

4. Choosing a polynomial D in chi (Qv ) for v ≥ 2, Virasoro constraints tell us that∫
Flag

(
Tk + Rk

)
(D) = 0 for k ≥ 0 .
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Dual algebra to DQ

1. From now on, I will focus on quivers as everything works in a similar way for
varieties X satisfying Hp,q(X ) = 0 whenever |p − q| > 1.

2. In general, H∗(M) is not freely generated by τi (v) =⇒ take the larger stack
MQ of all perfect complexes of representations. It has a universal representation
{Uv} giving cohomology classes τi (v) ∈ H∗(MQ).

3. When M is fine, there is a choice of a map ι : M → MQ . The universal
representations and thus τi (v) are compatible under ι∗.

4. We know that H∗(Md ) for the connected component Md ⊂ MQ is (often)

isomorphic to DQ :

H∗(MQ) = SymJτi (v), i > 0, v ∈ V K .

5. Define homology classes tk,v as duals of τk (v):

τk (v) ∩ (−) =
∂

∂tk,v
.

6. The homology of Md is the polynomial algebra

H∗(Md ) = ed ⊗ Sym[ti,v , i > 0, v ∈ V ] .
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Recovering a GW-like formulation of Virasoro constraints

1. Let us introduce the notation
〈
τk1 (v1) · · · τkn (vn)

〉
M

=
∫
[M]vir τk1 (v1) · · · τkn (vn)

2. It becomes clear that

ι∗[M]vir =
〈
exp

[∑
k,v

τk (v)tk,v

]〉
M

=

∫
[M]vir

exp
[∑

k,v

τk (v)tk,v

]
,

which replaces FX from GW theory. Under the integral, one should view tk,v as
formal variables which turn into homology classes after evaluation.

3. The GW formulation of Virasoro constraints is dual to the one given previously.
So we define Tk = T∗

k ,Rk = R∗
k ,Sk = S∗k , Lk = L∗k on H∗(MQ).

4. As before Tk is a second order differential operator in t’s and Rk is a degree
changing operator

Tk =
∑
i+j=k

i!j!τiτj
(
∆∗td(Q)

)
∩ ,

Rk =
∑
j≥1
v∈V

j(k+1) tj−k,v
∂

∂tj,v
.

Here a(b) = a(a− 1) · · · (a− b + 1) is the falling factorial.
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Virasoro constraints for sheaves: the operators

1. The homology version of Virasoro constraints:

(Lk + Sk ) ι∗[M]vir = 0 for k ≥ 0

equivalently Lwt=0 ι∗[M]vir = 0 .

2. The operator on the second line is defined by

Lwt=0 =
∑
n≥−1

(−1)n

(n + 1)!
T n+1 ◦ Ln .
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Wall-crossing and vertex algebras

1. Use Joyce’s geometric vertex algebras and wall-crossing to prove Virasoro
constraints

2. This wall-crossing allows us to compare virtual fundamental classes

[Mσ
d
]vir, [Mσ′

d
]vir of σ and σ′-stable representations in terms of some Lie bracket

[−,−] on the quotient K∗ = H∗(MQ)/T .

3. The Lie bracket comes from a vertex algebra H∗(MQ) leading to the following
schematic of the proof

4. VFC’s satisfying Virasoro constraints are physical states, and this property is
preserved under changing stability conditions.
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Example of a wall-crossing formula

1. We never discussed what happens when we have strictly semistables. In this case,
there is a geometric way of using the framed quiver to define classes [Mσ

d
]in ∈ K∗

counting semistables.

2. For a quiver Q with relations but without cycles, there is a stability condition σ0
such that

[Mσ0

d
]in = δd,v .

3. The wall-crossing formula becomes

[Mσ
d
] =

∑
d i=δv ,v∈V :∑l

i=1 d i=d

Ũ(d1, . . . , d l ;σ0, σ)

[
· · ·

[[
[Mσ0

d1
], [Mσ0

d2
]
]
, [Mσ0

d3
]
]
· · · , [Mσ0

d l
]
]

Here I neglected writing (−)in everywhere.

4. This means that all the information about [Mσ
d
]in is already contained in the Lie

algebra structure.
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Vertex algebras

1. A vertex algebra is the data of a Z-graded vector space V∗ over C together with
1.1 a vacuum vector |0⟩ ∈ V0,
1.2 a linear operator T : V∗ → V∗+2 called the translation operator,
1.3 and a state-field correspondence which is a degree 0 linear map

Y : V∗ −→ End(V∗)Jz, z
−1K ,

denoted by Y (a, z) :=
∑

n∈Z a(n)z
−n−1 , where deg(z) = −2.

2. These need to satisfy some axioms that have enlightening interpretations in terms
of CFTs



Sketch of the geometric construction of vertex algebras

1. Joyce (17’) constructed vertex algebras on the homology V∗ = H∗+vdimC (MQ),
which requires three ingredients related to additivity:

1.1 The zero object p
0−→ MQ gives |0⟩ = 0∗(p).

1.2 There is a natural action of BGm on MQ that rescales the automorphisms of objects.
On the level of homology, this action produces the operator T .

1.3 The complex

ExtQ =
⊕

v∈V\F

U∨
v ⊠ Uv

φE−→
⊕
e∈E

U∨
t(e) ⊠ Uh(e)

ςR−→
⊕
r∈R

U∨
t(r) ⊠ Uh(r)

on MQ × MQ is the last piece necessary to write down Y (v , z). Satisfies:

T vir = ∆∗Ext[1] + 1

This is why Virasoro constraints see T vir.

2. The vertex algebra V∗ was shown to be a lattice vertex algebra by Joyce (17’),
which is the most natural vertex algebra with the underlying graded vector space

V∗ = Q[ZV ]⊗ SymJti,v , i > 0, v ∈ V K .
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The geometric construction of a Lie algebra

1. The stacky quotient of MQ by BGm is denoted by Mrig

Q . As one would expect,
there is roughly the correspondence

K∗ = V∗+2/TV∗ = H∗+vdimC (M
rig

Q ) .

2. Now there are two roles that K∗ plays:
2.1 The classes [M]in live in K∗ even if M is not fine.
2.2 K∗ has a Lie bracket:

[v ,w ] = v0w , ∀v ,w ∈ V∗ .
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Conformal element

1. A conformal element ω ∈ V4 leads to a field Y (ω, z) =
∑

k∈Z Lkz
−k−2 with

[
Ln, Lm

]
= (n −m)Lm+n +

n3 − n

12
δn+m,0 · C .

2. Assume that χsym(v ,w) = χ(v ,w) + χ(w , v) is non-degenerate to get ω ∈ V∗.
One can always find a larger vertex algebra containing ω such that Lk ’s restrict to
V∗.

3. Take the dual basis v̂ ⊂ B̂ to B. Then

ω =
1

2

∑
v∈B

t1,v t1,v̂

and C = |V |.

Remark
When working with X , need to include Hodd(X ) ∼= K 1(X ,Q). One can still write

ω = 1
2

∑
v∈B tH1,v t

H
1,v̂ where H denotes some holomorphic grading shift leading to odd degrees.

The conformal charge is given by χ(X ).
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Physical states and the main claim

1. Note that ∫
[Mσ

d
]in

Lwt=0(D) = 0 for D ∈ H∗(MQ)

is a well-defined generalization of Virasoro constraints.

2. Borcherds defined physical states p ∈ P ⊂ V2 as satisfying the equations

Lkp = δk,0p , for k ≥ 0 .

and showed that they form a Lie subalgebra P̌ ⊂ K0.

Theorem (BLM(22’), B. (23’))
The condition that [Mσ

α ]
in satisfies Virasoro constraints is equivalent to it being a

physical state with respect to the ω given above. I.e. [Mσ
α ]

in ∈ P̌.
In particular, wall-crossing, stated in terms of iterated Lie brackets, preserves Virasoro
constraints from the RHS to the LHS of the formula.
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Main consequences

Theorem
Virasoro constraints hold for the following cases:

1. B. (23’) Bridgeland semistable representations of quasi-smooth quivers with
frozen vertices.

2. B. (23’) Stable framed representations of such quasi-smooth quivers.

3. B. (23’) Gieseker semistable sheaves on P2 and P1 × P1.

4. (BLM) Slope and Gieseker semistable positive rank sheaves on surfaces with
H1(OS ) = H2(OS ) = 0.

5. (BLM) + B.(24’) Slope semistable dimension 1 sheaves on surfaces with
H1(OS ) = H2(OS ) = 0.

6. (BLM) Slope semistable vector bundles on curves.

7. (BLM) + B.(21’) Quot schemes parametrizing 0-dimensional quotients of vector
bundles on curves and surfaces.

Remark
In the second point, I used derived equivalences of the surfaces to quivers. This is the
first proof of Virasoro constraints for sheaves on surfaces independent of Witten’s
conjecture. Using a universality of Virasoro constraints for Hilbn(S), gives an
independent proof of Virasoro constraints for any surface S . In particular, this
establishes them as an autonomous phenomenon.
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