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BPS indices in Type IIA/CY

Type IlA string theory on
a Calabi-Yau threefold 2)

. B

Effective theory in 4d — N=2 SUGRA
BPS indices Q(7) = Trayy(—1)"

electro-magnetic charge Y= (po,pa’, Qa,q0)
due to b2()) + 1 gauge fields a=1,...,0(9)
from bo vector multiplets + graviphoton

Physics Mathematics

#states of 2 BPS black holes generalized
(bound states of D6, D4, D2, DO-branes = Donaldson-Thomas
wrapping 6, 4, 2, O-dimensional cycles) invariant of CY

While for non-compact CY's there are various techniques to compute BPS
Indices (localization, quivers, relation to Vafa-Witten topological theory, ...),
it is a tremendous problem to compute them for compact CYs.



D4-D2-D0 BPS states

We consider D4-D2-DO0 bound states, i.e. no D6-brane charge (p° = 0)
(U(~) — rank 0 DT invariant
Due to “spectral flow” symmetry it depends only on:

e D4-brane charge p“ )
e residue class u € Ho(Z)/Hy(7Z) X
(runs over detkg,p values) g ﬁ Qv Qpa p, (do)
e invariant DO-charge o = qo — % ﬁ:“bqaqu l,
frab = RabeP_ intersection generating functions
numbers _ <\ —2midoT
) _ZLQ( /) hyp,u(T) = Z Qp,1(Go) €

possess nice modular properties!!!

The simplest case: D4-brane wraps an irreducible divisor T'y = p®y, C Q)

-
hyp, .. (7) — weakly holomorphic e )
’ hpu(T) = Cp.u(n)q” q==¢
vector valued modular form of ps(T) n;}ﬁﬂ pu(n) g s < 0
weight —2 by —1 S
) " #(c'rer) (er +d) 742 IZMMthv( )

[Maldacena,Strominger,Witten '97] Y,




Modular bootstrap

The space of weakly holomorphic modular forms is
finite dimensional!

dim.#.,(2)) < # polar terms | — terms with n < 0

l’ [Gaiotto,Strominger,Yin ’06,
: e : . I Gaiotto,Yin ‘07,
[ It is sufficient to find only the polar coefficients ] Collinucci, Wyder 08,
. Van Herck,Wyder ‘09]
(hew boundary Machine to compute K ODT N
conditions GV 3
Q[\ BPS 'nd'cei/~ (D4-D2-DO0)
“direct integration” fMNOI|3 rank 1 DT crc\)/\fslliln modularity of
\of topological string ormuia (D6-D2-D0) J generating functior&

Examples:
quintic  decantic What is the story for
gint = 93 Gint = 00 arbitrary divisors?
Javail = 64 Gavail = 71 400

[S.A.,Feyzbakhsh,Klemm,
Pioline,Schimannek 23]
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The plan of the talk

The origin of modularity and modular anomaly

Reducible divisors: Mock modular case
Solution of the anomaly, polar terms and results for BPS indices

Reducible divisors: Higher depth case
Solution of the anomaly via indefinite theta series

Conclusions



The origin of modularity

Why should h,(7) possess
modular properties?

S-duality ,0C

modular group
()  Tduality 124

K_N _ _
Type ”B/CYxsl Type IIA/CY xSl M theory/CY x’—Jslxasl

SUSY non-linear sigma model

Effective th | —
ective theory in 3d with target space M

D4—brane/r xgl pointlike object
4

(instanton)

After compactification on the circle
of the modular group

M carries an isometric actionJ

e Affects the metric on M by instanton corrections
e Each instanton is weighted by the BPS index €2(+)

e All instantons are explicitly known from twistorial construction of M
. [S.A.,Pioline,Saueressig,Vandoren ‘08, S.A. '09]

[Restriction on (the generating function of) BPS indices Q(v)]
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Modular anomaly

The restriction specifies a function that must transform as a vector valued
modular form of weight —35 by — 1

NMmax

/ﬁp,n(Ta T) = ) + Z Z Z RL{?;Z}(T T thi,m (7)
i=1

n=2 ZZL 1 Pi=P {Nz

® Ri{?};)}(ﬂ T) — non-holomorphic indefinite theta series with kernels

constructed from (derivatives of) generalized error functions
e the sum over n is bounded by npy.x = #irreducible components in I'y = r

- =

If the divisor is reducible, h,(7) has a modular anomaly cancelled in ﬁp(T, T)

_ modular
[ hp(7) are (higher depth) mock modular forms ] completion
\ o —
« N

Mixed Mock modular form — a holomorphic function which has
a modular anomaly controlled by another modular form (shadow)

such that its (non-holomorphic) E(T 7) = h(r) — ) ds g(2) £(r)
modular completion is given by S (T — 2)v |
\_ — Zwegers 02/




Mock modular case

From now on, restrict to one-modulus CY (b2() =1).
Then D4-charge p = r degree of reducibility.

Thecase r=2: hg ,— mixed mock modular form of weight -3/2
with a completion having the holomorphic anomaly:

where
=0,...,26—1
T (2k) l,:; — intersection number
aﬂ_'hZ,u ] 3/2 Z Hu 201 —l—ﬁ; hl,,ul( ) hl,M—LM (T) mT o
167iTy" ™ |, =0 9}&2&) Z oSBTk

ke2kZ+p
For mixed mock modular functions, the polar terms are not enough to fix
them uniquely. We first need to solve the modular anomaly:

ho u= h(o) h(an)
usual modular form j \ mock modular form with
fixed by polar terms the above modular anomaly

The form of the completion ., implies that A% = Z G g Py
where G("") IS a usual mock modular form Wlth 11 =0

completlon G("’) having the holomorphic anomaly [8 Ar) _ N —9(%)]
_ T

Solution constructed in [Dabholkar,Murthy,Zagier ‘12] 16717,




Mock modular forms of optimal growth

[Dabholkar,Murthy,Zagier ‘12] constructed a class of mock modular forms, with
shadows given by 6%%)(r), distinguished by the slowest growth of their

Fourier coefficients
G~ N ( &/d[gd])

dlr
p(d)=1

+1 if d is a square-free with an even # of prime factors
—1 if d is a square-free with an odd # of prime factors
0 if d has a squared prime factor

Mobius
function p(d) =

Vﬁd) — Hecke-like operator (rescales the lattice of theta series by r)
Qg — asetof “seed” functions: Q1, Qg, Q10, D14, D15, ...

@, coincides with the generating series of Hurwitz class numbers, which is also
the (normalized) generating function of SU(2) Vafa-Witten invariants on CP2.

It is enough to account for all K
which are powers of prime number. The problem reduces to

finding polar terms




Polar terms

The polar terms can be found using wall-crossing — jumps of BPS indices
across co-dimension 1 walls in the moduli space.

It happens because €)(y) counts not only single centered black holes, but
also their bound states which become stable/unstable after crossing a wall.
Stability condition is determined by the central charge Z, = qr 2 — pPFy

_ . where Fj(z) = 0,oF(z) — holomorphic
ldea: take I, to be independent A=0, ... 5y(D) orepotential

parameters .

For vy 4 -Stability there is a chamber
where (for some ) BPS indices vanish

Recipe: start in this chamber and using

g% Space of stability
conditions

~
N~~
~

wall-crossing formulae, go to the large -::-_45— ~~._Moduli space 5

_ g | \\~~~ /
vo!urr_lde cha_rtnhbtehr whk(]ere_ thle Up o, -Stability ol large "~ < ) = ~
coincides wi e physical one volume ,:ym-stabilﬁﬂ E%:

0.2 0.4 0.6 0.8 1.0

B [Feyzbakhsh 22|

[ Explicit formula for rank 0 DT ]/ Can be computed from GV
i

In terms of rank 1 DT invariants nvariants using MNOP formula
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Problem: one needs to know GV invariants at large genus.

So far we have found generating functions of Q5 ,(do)
for two CICY: X9 and Xg

degree 10 hypersurface / \ degree 8 hypersurface

in :[P5,2,1,1’1 with kK = 1 in :[P4,1,1,1’1 with Kk = 2
/\
203E; + 445E,E?
ﬁ: 1T 6 _n (3 575q + 271955¢° + 206406410¢° + 21593817025¢" +\)
216 7]35 ——"
polar terms
o B 5397523 F % + 70149738 E3 E§ — 12112656 £ E — 61127530 E3 Eg — 2307075E¢ 4@
s 4643802316870 i
—10826123E;° Es — 14574207E] E§ + 20196255 E1 E + 5204075 E4Ef Dy 562
1934917632100 /2%m
+ Hy(7) ha(7)? generating series of E,, E¢ — Eisenstein series
Hurwitz class numbers — 0, — EE Serre
(mock modular) — 1 12 derivative

hao = q~ % (T — 1728q + 203778¢2 — 13717632° — 23922034036¢* + ... )
\ h2,1 — q_iﬁ (__ + 1430q 4344943 2 un 208065204(] 1991464131237q4 4 y
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Higher ranks

Modular completion in the one-modulus case:

() = b+ S S0 RO (1) T ()

n—= 22” r; =T {p,% 7=1

Use the 2-step procedure as in the r = 2 case:
By = h( ) + h(an)

Can we solve the modular
anomaly for any r?

O
usual modular form / \ mock modular form of depth » — 1
fixed by polar terms with the above modular anomaly

Problem: the anomaly depends on all h(o)m with 7; < r remaining unknown

'ﬁ} Express h,, an) in terms of h,f,,“)m and find coefficients
p

What are these
functions?

h(a“) -3 ¥ Yee Hhﬁ??m

n= 221 1')"2—7’ {/JJ’L &

J

\_
\ anomalous coefficients




Anomalous coefficients

Anomaly equation for hg,?:j)

.- =
(red)

9, {u;y aredepth n —1 mock modular with completion

-

n )
~({r:}) _ ({r:i}) ({sk}) ("1 g 1)
Iudpiy = p{u) H Sym{ sj Sj Z Ru,{ik} g”k’“jﬁl"“’;}Hl }
m=2 i B {Vk} k
L ne=n

.

r psk})

g(rl 3T21T3)

The sum qgoes over trees
g S1="r1+ro9+7r3

of depth 2 with n leaves:
(for one charge gfoL, =, 0)

\'rl Tz TS} \T?’L—l Tn
. Y Y
Examples: " A
"*(7‘1;?“2) _ (?“1,7“2) (?"1,?"2)
g =g +R _ .
K1, 12 Mo b1, 2 Kyl , 12 R(r2+?,3)_1

§(T13T2)T3) —_ g(rlaTQaTS) _|_R(T19T23T3) _}_2 R(T15T2+T3) g(TQaTS) _|_
Loy f b1 5 b2, 03 Kyl b2, (3 Moy o1 42, (43 3 Z My 1,V V42,143 erm
v=0 b

Aorhy N ;




Two charges

Find a mock modular form satisfying

g () = gl (1) + RO (7, 7)

It is sufficient to know that

a_R(le'r‘z) . 5(!‘57‘0) TO \V KJO 9(2%0) o = ng(Tl, TQ)
TV, 2 T T i — 2 . 3/2 THO K
16miT, Ko = = T172(r1 +72)
. 2r§
6;91) — 53: mod Kk
, - (k7o) (ko)
[ gl(jbfi)z L0 5u—u1—nz GMIZO

DMZ mock modular form
of optimal growth



Unit charges and Vafa-Witten

generating series of
Hurwitz class numbers
[Vafa,Witten '94] I

VW 21 _ VW 21\ 2 3 (normalized) generating function of
hz’“ P} =3 (hl CP D Hy SU(2) Vafa-Witten invariants on CP?

K=r1=19=1 = kKp=1 = gf}’l):HM

where hy WV [CP?] = n3(7)

This I1s not
an accident!

The anomaly equation for gf} """ D = 9gn,, and k=1 coincides
with the anomaly equation for the normalized generating functions
of SU(n) Vafa-Witten invariants on CIP?

Neither of these solutions generalizes to more general cases



Indefinite theta series

We construct a general solution in terms of indefinite theta series

Typical indefinite theta series >~ ¢29" &(v2r; k)
keA+pu
Q(k) = Q+(k) — Q_(k) is a quadratic form of signature (ny,n_)

Two ways to achieve convergence

®(z) exponentially decaying <J k’ ®(z) piecewise constant

along negative directions

Ex.: Seigel theta series () ~ H(Sgn(%l -x) —sgn(v; o - :c))

O(z) ~exp(—mQ_(x)) o° =1
modular, but not holomorphic

How to construct
completion?

holomorphic, but not modular

. 1

mock (of depth n_)

/Recipe: [S.A.,Banerjee,Manschot,Pioline ‘16]
mn

i=1 _ . /R i=1
generalized error functions

« building blocks of the coefficients R

({ri})
pofp }

replace Hsgn(fvz- cz) = E,({v}2) = / dz' e~ (@=2)" Hsgn(’vi - z')

~

4




Lattice extension
Consider again the case n = 2:

ﬂ(””la’@) _ (r1,m2) + R(T‘l,TQ) where e —ll l \

ppiope = Y o Fos 1 s 2 ) / vk
B R R i) (El (\/2T2 —) — sgn(v - k))
= o]
gl & Y g2e) (Sgn(v k) —sgn(w-’f)) where w € A and Q(w) =0
kEA+u/ . i.e. w Is anull vector
\ needed for convergence (E1(z) vd sgn(z)) /
Problem: in our case A = Z with Q(k) = —2kok* does not have null vectors

Solution: Extend the lattice by multiplying by Jacobi theta functions

Gt (721, 22) = UL, (721, 20) + RYLT, (1) (7, 20)057 (7, 22)

Each theta function adds 1 dimension to the lattice, but does not change A*/A

solve extended anomaly eq.

- ({ri})
Iy {pi}

/ extract solution

of the original eq.

In general
case:

A=7Z""1s Ay = Z’_”_l@( T Zi”)
=1

(]

n (KTi) (.
({ri}) 1\ DV (2;) _({r:}) |
gﬂa{ﬂi}(T) o (H (27”73(7.))%7”1:) g,u,{,ui}(Tv {Zz})

=l

z;=0




Refinement

We also need to introduce refinement z=a — 710 a,feR
Physically, it corresponds to switching on Q-background

. 3

({ri}) ({ri})ref

9o (1) = g, 1,37 (1,2) — mock Jacobi-like form
o o at + b z
_ o _ ({r:}) under 7 — , 2>
e simplifies functions Ru (i} cT +d cT +d

e regularizes divergences due to null vectors

w- = o

R 2
| Z qékQ (sgn(v k) —sgn(w - k) ) Z sgn((v - w) ky)
refinement (/" ca v kw€Z  divergent
y = e27riz

> a3y (sen(v- k) — sen(w -k + 5))

keA+p! )k eometric
> Y e (sen((v - w) ka) — sgn(B)) IomEEe
N/

convergent, but poles at z = 0 ‘J



Results

Goal: Find mock Jacobi-like forms on the extended lattice that are
regular at z = 0 and then take the unrefined limit

.-

4 )
r; })ref s (75, 4150505 )
QL{{M) (7‘ zZ) = Sym{ Z S‘ Y {{ii} H %ﬁﬁgkﬂ, j:ﬂlj:rg;Jrl }
\ k=1 J t J
theta series on A..¢ with kernel Jacobi-like form
n—1 needed to cancel
11 (Sgn(vi k) —sgn(w; - k + B polesat z =0

=1
1

One can take ¢ ~

Zn—l

unrefined limit z—0 il the most non-trivial step

{ Explicit expressions for gg-”,gfig and gﬁb;i?ﬁ ]




Conclusions

e \We derived modular properties of generating functions of D4-D2-D0O
BPS indices (rank O DT invariants).

e Using these properties, wall-crossing and direct integration of topological
string, we computed the generating functions for one-parameter compact CY
threefolds =——>» mock modular forms

—>» new boundary conditions for the direct integration
of topological string

e Solution of the modular anomaly for » > 2 (consistency of different solutions)
—> reduces the problem to finding just a finite number of polar terms

Possibles extensions:
e compute polar terms for r > 2 =—> new strategy?
e CYs with two and more moduli
e elliptic and K, fibrations ...

e DT invariants of higher rank?

o0
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