Mock modularity of Calabi-Yau threefolds

Sergei Alexandrov

Laboratoire Charles Coulomb, CNRS, Montpellier

with B.Pioline 1808.08479 with N.Gaddam, J.Manschot and B.Pioline 2204.02207 with S.Feyzbakhsh, A.Klemm and B.Pioline 2312.12629 with K.Bendriss 2408.16819, 2411.17699

BPS indices in Type IIA/CY Type IIA string theory on a Calabi-Yau threefold \mathfrak{Y} Effective theory in 4d — N=2 SUGRA **BPS indices** $\Omega(\gamma) = \operatorname{Tr}_{\mathcal{H}(\gamma)}(-1)^{F}$ electro-magnetic charge $\gamma = (p^0, p^a, q_a, q_0)$ due to $b_2(\mathfrak{Y}) + 1$ gauge fields $a = 1, \ldots, b_2(\mathfrak{Y})$ from b_2 vector multiplets + graviphoton **Mathematics Physics** #states of ¹/₂ BPS black holes generalized **Donaldson-Thomas** (bound states of D6, D4, D2, D0-branes =

wrapping 6, 4, 2, 0-dimensional cycles)

invariant of CY

While for *non-compact* CYs there are various techniques to compute BPS indices (localization, quivers, relation to Vafa-Witten topological theory, ...), it is a tremendous problem to compute them for *compact* CYs.

D4-D2-D0 BPS states

We consider D4-D2-D0 bound states, i.e. no D6-brane charge $(p^0 = 0)$

 $\Omega(\gamma)$ — rank 0 DT invariant

Due to "spectral flow" symmetry it depends only on:

• D4-brane charge
$$p^{a}$$

• residue class $\mu \in H_{2}(\mathbb{Z})/H_{4}(\mathbb{Z})$
(runs over det κ_{ab} values)
• invariant D0-charge $\hat{q}_{0} \equiv q_{0} - \frac{1}{2} \kappa^{ab} q_{a} q_{b}$
• intersection
 $\kappa_{ab} = \kappa_{abc} p^{c}$ intersection
numbers
 $\overline{\Omega}(\gamma) := \sum_{d|\gamma} \frac{1}{d^{2}} \Omega(\gamma/d)$
 $\overline{\Omega}(\gamma) := \sum_{d|\gamma} \frac{1}{d^{2}} \Omega(\gamma/d)$

possess nice modular properties!!!

The simplest case: D4-brane wraps an *irreducible* divisor $\Gamma_4 = p^a \gamma_a \subset \mathfrak{Y}$

 $h_{p,\mu}(au)$ — weakly holomorphic vector valued modular form of weight $-rac{1}{2}b_2-1$

[Maldacena,Strominger,Witten '97]

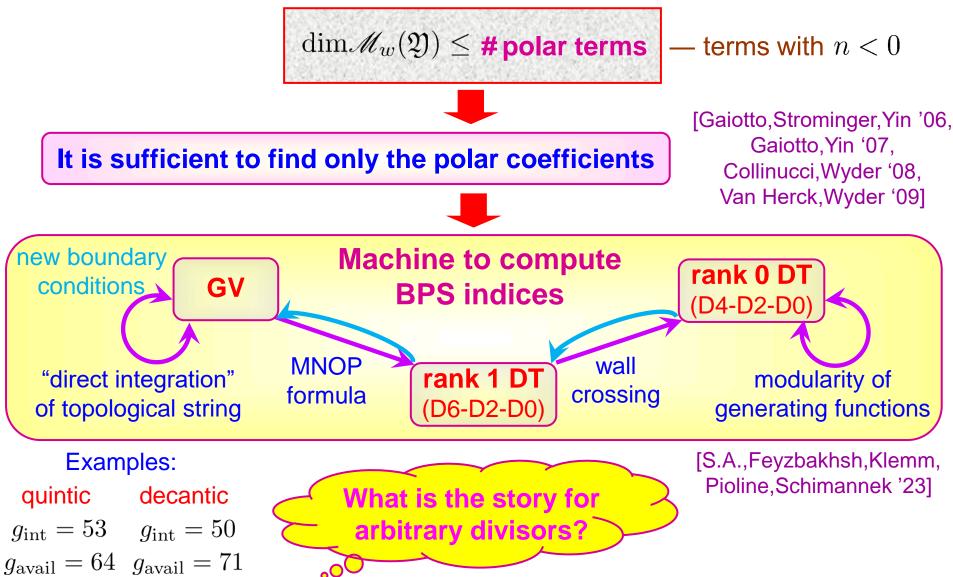
$$h_{p,\mu}(\tau) = \sum_{n \ge n_{\min}} c_{p,\mu}(n) q^n \qquad q = e^{2\pi i \tau}$$

$$n_{\min} < 0$$

$$h_{p,\mu}\left(\frac{a\tau + b}{c\tau + d}\right) = (c\tau + d)^{-\frac{1}{2}b_2 - 1} \sum_{\nu} M_{\mu\nu} h_{p,\nu}(\tau)$$

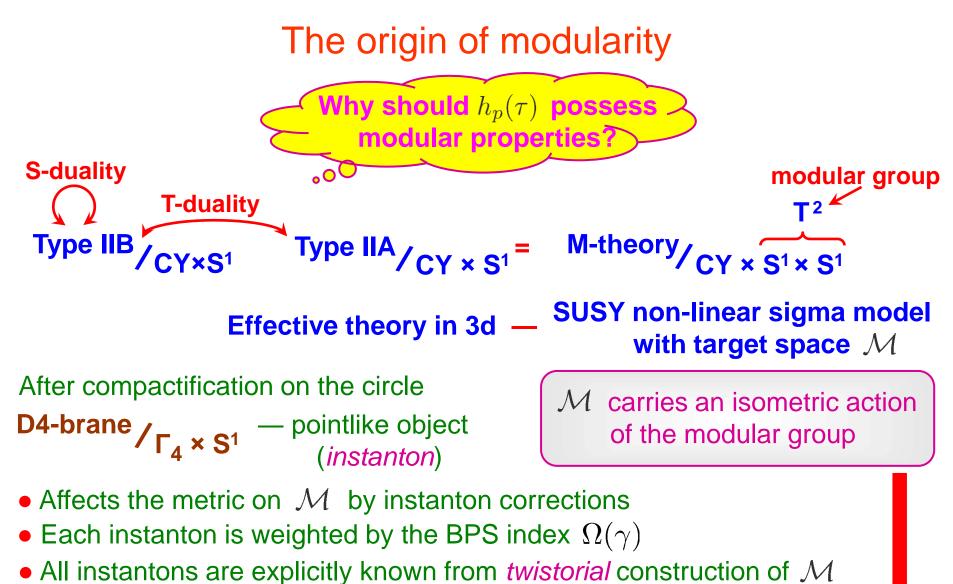
Modular bootstrap

The space of weakly holomorphic modular forms is finite dimensional!



The plan of the talk

- 1. The origin of modularity and modular anomaly
- 2. Reducible divisors: Mock modular case Solution of the anomaly, polar terms and results for BPS indices
- 3. Reducible divisors: Higher depth case Solution of the anomaly via indefinite theta series
- 4. Conclusions



[S.A., Pioline, Saueressig, Vandoren '08, S.A. '09]

Restriction on (the generating function of) BPS indices $\Omega(\gamma)$

S.A., Pioline '18

Modular anomaly

The restriction specifies a function that must transform as a vector valued modular form of weight $-\frac{1}{2}b_2 - 1$

$$\widehat{h}_{p,\mu}(\tau,\bar{\tau}) = h_{p,\mu}(\tau) + \sum_{n=2}^{n_{\max}} \sum_{\substack{\sum_{i=1}^{n} p_i = p}} \sum_{\{\mu_i\}} R_{\mu,\{\mu_i\}}^{(\{p_i\})}(\tau,\bar{\tau}) \prod_{i=1}^{n} h_{p_i,\mu_i}(\tau)$$

• $R_{\mu,\{\mu_i\}}^{(\{p_i\})}(\tau,\bar{\tau})$ — non-holomorphic indefinite theta series with kernels constructed from (derivatives of) generalized error functions

• the sum over n is bounded by $n_{\max} = \#$ irreducible components in $\Gamma_4 \equiv r$

If the divisor is *reducible*, $h_p(\tau)$ has a *modular anomaly* cancelled in $\hat{h}_p(\tau, \bar{\tau})$

 $h_p(\tau)$ are (higher depth) *mock* modular forms

modular completion

Mixed Mock modular form — a holomorphic function which has a modular anomaly controlled by another modular form (shadow) such that its (non-holomorphic) modular completion is given by $\hat{h}(\tau,\bar{\tau}) = h(\tau) - \int_{\bar{\tau}}^{-i\infty} dz \frac{\overline{g(\bar{z})}}{(\tau-z)^w} f(\tau) \frac{1}{z} \int_{\bar{\tau}}^{-i\infty} dz \frac{\overline{g(\bar{z})}}{(\tau-z)^w} f(\tau) \frac{1}{z} \int_{\bar{\tau}}^{-i\infty} dz \frac{\overline{g(\bar{z})}}{(\tau-z)^w} f(\tau) \frac{1}{z} \int_{\bar{\tau}}^{-i\infty} dz \frac{1}{(\tau-z)^w} \frac{1}{(\tau-z)^w} \int_{\bar{\tau}}^{-i\infty} dz \frac{1}{(\tau-z)^w} \frac{1}{(\tau-z)^w} \int_{\bar{\tau}}^{-i\infty} dz \frac{1}{(\tau-z)^w} \frac{1}{($

Mock modular case

From now on, restrict to one-modulus CY $(b_2(\mathfrak{Y}) = 1)$. Then D4-charge p = r degree of reducibility.

The case r = 2: $h_{2,\mu}$ — *mixed mock* modular form of weight -3/2 with a completion having the holomorphic anomaly:

$$\partial_{\bar{\tau}}\hat{h}_{2,\mu} = \frac{\sqrt{\kappa}}{16\pi i \tau_2^{3/2}} \sum_{\mu_1=0}^{\kappa-1} \overline{\theta_{\mu-2\mu_1+\kappa}^{(2\kappa)}(\bar{\tau})} h_{1,\mu_1}(\tau) h_{1,\mu-\mu_1}(\tau)$$

where

 $\begin{array}{l} \mu = 0, \dots, 2\kappa - 1 \\ \kappa \quad - \text{ intersection number} \\ \theta_{\mu}^{(2\kappa)}(\tau) = \sum e^{\frac{\pi i \tau}{2\kappa} k^2} \end{array} \end{array}$

$$e^{2\kappa}(\tau) = \sum_{k \in 2\kappa \mathbb{Z} + \mu} e^{2\kappa}$$

1.

For *mixed mock* modular functions, the polar terms are not enough to fix them uniquely. We first need to solve the modular anomaly:

fixed by polar terms

 $h_{2,\mu} = h_{2,\mu}^{(0)} + h_{2,\mu}^{(\mathrm{an})}$ usual modular form fixed by polar termsthe above modular anomaly

The form of the completion $\hat{h}_{2,\mu}$ implies that $h_{2,\mu}^{(an)} = \sum_{\mu_1=0}^{\kappa-1} G_{\mu-2\mu_1+\kappa}^{(\kappa)} h_1$ where $G_{\mu}^{(\kappa)}$ is a *usual* mock modular form with completion $\hat{G}_{\mu}^{(\kappa)}$ having the holomorphic anomaly

Solution constructed in [Dabholkar, Murthy, Zagier '12]

$$= \sum_{\mu_1=0}^{\infty} G_{\mu-2\mu_1+\kappa}^{*} n_{1,\mu_1} n_{1,\mu-\mu_1} \\ \partial_{\bar{\tau}} \widehat{G}_{\mu}^{(\kappa)} = \frac{\sqrt{\kappa}}{\sqrt{\kappa}} \overline{\theta_{\mu}^{(2\kappa)}}$$

 $16\pi i \tau_{2}^{0/2}$

Mock modular forms of optimal growth

[Dabholkar,Murthy,Zagier '12] constructed a class of mock modular forms, with shadows given by $\theta_{\mu}^{(2\kappa)}(\tau)$, distinguished by the *slowest growth* of their Fourier coefficients

$$G_{\mu}^{(\kappa)} \sim \sum_{\substack{d \mid \kappa \\ \mu(d) = 1}} \left(\mathcal{V}_{\kappa/d}^{(d)} \left[\mathcal{Q}_d \right] \right)_{\mu}$$

Möbius
function $\mu(d) = \begin{cases} +1 & \text{if } d \text{ is a square-free with an even } \# \text{ of prime factors} \\ -1 & \text{if } d \text{ is a square-free with an odd } \# \text{ of prime factors} \\ 0 & \text{if } d \text{ has a squared prime factor} \end{cases}$

 $\mathcal{V}_r^{(d)}$ — Hecke-like operator (rescales the lattice of theta series by r)

 \mathcal{Q}_d — a set of "seed" functions: $\mathcal{Q}_1, \ \mathcal{Q}_6, \ \mathcal{Q}_{10}, \ \mathcal{Q}_{14}, \ \mathcal{Q}_{15}, \ \dots$

 Q_1 coincides with the generating series of *Hurwitz class numbers*, which is also the (normalized) generating function of *SU(2) Vafa-Witten invariants* on \mathbb{CP}^2 . It is enough to account for all κ which are *powers of prime number*.

Polar terms

The polar terms can be found using *wall-crossing* — jumps of BPS indices across co-dimension 1 walls in the moduli space.

It happens because $\Omega(\gamma)$ counts not only single centered black holes, but also their bound states which become stable/unstable after crossing a wall. Stability condition is determined by the central charge $Z_{\gamma} = q_{\Lambda} z^{\Lambda} - p^{\Lambda} F_{\Lambda}$

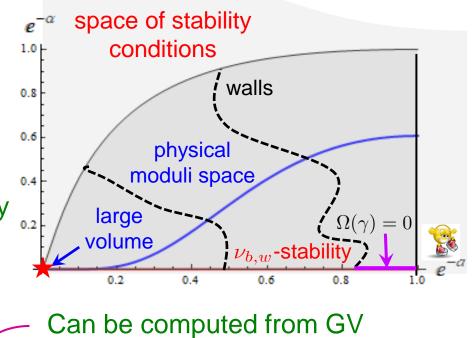
Idea: take F_{Λ} to be independent parameters

For $\nu_{b,w}$ -stability there is a chamber where (for some γ) BPS indices vanish

Recipe: start in this chamber and using wall-crossing formulae, go to the large volume chamber where the $\nu_{b,w}$ -stability coincides with the physical one

[Feyzbakhsh '22]

Explicit formula for rank 0 DT in terms of rank 1 DT invariants where $F_{\Lambda}(z) = \partial_{z^{\Lambda}} F(z)$ — holomorphic $\Lambda = 0, \dots, b_2(\mathfrak{Y})$ prepotential



invariants using MNOP formula

Results

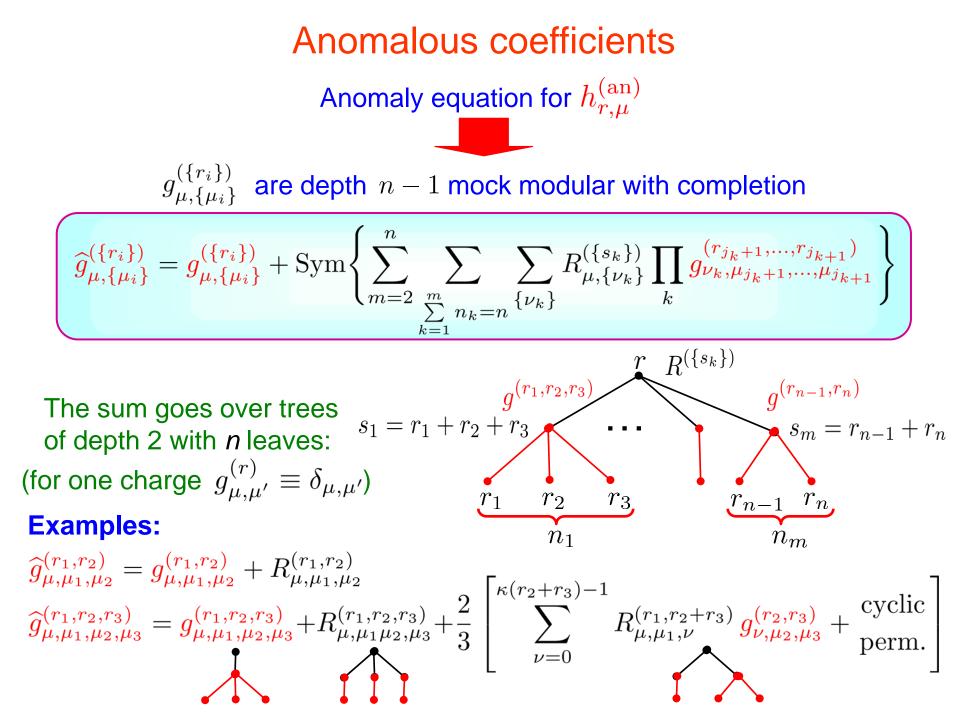
Problem: one needs to know GV invariants at large genus. So far we have found generating functions of $\overline{\Omega}_{2,\mu}(\hat{q}_0)$ for two CICY: X_{10} and X_8 degree 10 hypersurface degree 8 hypersurface in $\mathbb{P}_{5,2,1,1,1}$ with $\kappa = 1$ in $\mathbb{P}_{4,1,1,1,1}$ with $\kappa = 2$ $h_1 = \frac{203E_4^4 + 445E_4E_6^2}{216\,\eta^{35}} = q^{-\frac{35}{24}} \left(3 - 575q + 271955q^2 + 206406410q^3 + 21593817025q^4 + \cdots\right)$ polar terms $h_{2,\mu} = \frac{5397523E_4^{12} + 70149738E_4^9E_6^2 - 12112656E_4^6E_6^4 - 61127530E_4^3E_6^6 - 2307075E_6^8}{46438023168\eta^{100}} \theta_{\mu}^{(2)}$ $+ \frac{-10826123E_4^{10}E_6 - 14574207E_4^7E_6^3 + 20196255E_4^4E_6^5 + 5204075E_4E_6^7}{100}D_{1/2}\theta_{\mu}^{(2)}$ $1934917632\eta^{100}$ + $H_{\mu}(\tau) h_1(\tau)^2$ generating series of Hurwitz class numbers E_4, E_6 — Eisenstein series $D_w = q\partial_q - \frac{w}{12}E_2 - \frac{\text{Serre}}{\text{derivative}}$ (mock modular) $\begin{cases} h_{2,0} = q^{-\frac{19}{6}} \left(7 - 1728q + 203778q^2 - 13717632q^3 - 23922034036q^4 + \dots \right) \\ h_{2,1} = q^{-\frac{35}{12}} \left(-\frac{21}{4} + 1430q - \frac{4344943}{4}q^2 + 208065204q^3 - \frac{199146131237}{4}q^4 + \dots \right) \end{cases}$

Higher ranks

Modular completion in the one-modulus case:

$$\widehat{h}_{r,\mu}(\tau,\bar{\tau}) = h_{r,\mu}(\tau) + \sum_{n=2}^{r} \sum_{\sum_{i=1}^{n} r_i = r} \sum_{\{\mu_i\}} R_{\mu,\{\mu_i\}}^{(\{r_i\})}(\tau,\bar{\tau}) \prod_{i=1}^{n} h_{r_i,\mu_i}(\tau)$$

Use the 2-step procedure as in the
$$r = 2$$
 case:
 $h_{r,\mu} = h_{r,\mu}^{(0)} + h_{r,\mu}^{(an)}$
usual modular form
fixed by polar terms
Problem: the anomaly depends on all $h_{r_i,\mu_i}^{(0)}$ with $r_i < r$ remaining unknown
Express $h_{r,\mu}^{(an)}$ in terms of $h_{r_i,\mu_i}^{(0)}$ and find coefficients
 $h_{r,\mu}^{(an)}(\tau) = \sum_{n=2}^{r} \sum_{\sum_{i=1}^{n} r_i = r} \sum_{\{\mu_i\}} g_{\mu,\{\mu_i\}}^{(\{r_i\})}(\tau) \prod_{i=1}^{n} h_{r_i,\mu_i}^{(0)}(\tau)$
anomalous coefficients



Two charges

Find a mock modular form satisfying

 $\widehat{g}_{\mu,\mu_{1},\mu_{2}}^{(r_{1},r_{2})}(\tau,\bar{\tau}) = g_{\mu,\mu_{1},\mu_{2}}^{(r_{1},r_{2})}(\tau) + R_{\mu,\mu_{1},\mu_{2}}^{(r_{1},r_{2})}(\tau,\bar{\tau})$

It is sufficient to know that

$$\partial_{\bar{\tau}} R_{\mu,\mu_{1},\mu_{2}}^{(r_{1},r_{2})} = \delta_{\mu-\mu_{1}-\mu_{2}}^{(\kappa r_{0})} \frac{r_{0}\sqrt{\kappa_{0}}}{16\pi i \tau_{2}^{3/2}} \overline{\theta_{\mu_{0}}^{(2\kappa_{0})}} \qquad r_{0} = \gcd(r_{1},r_{2})$$

$$\kappa_{0} = \frac{\kappa}{2r_{0}^{2}} r_{1}r_{2}(r_{1}+r_{2})$$

$$\delta_{x}^{(\kappa)} = \delta_{x \bmod \kappa}$$

$$g_{\mu,\mu_{1},\mu_{2}}^{(r_{1},r_{2})} = r_{0} \delta_{\mu-\mu_{1}-\mu_{2}}^{(\kappa r_{0})} G_{\mu_{0}}^{(\kappa_{0})}$$
DMZ mock modular form of optimal growth

Unit charges and Vafa-Witten

generating series of $\kappa = r_1 = r_2 = 1 \implies \kappa_0 = 1 \implies g_{\mu}^{(1,1)} = H_{\mu}$ Hurwitz class numbers [Vafa,Witten '94] (normalized) generating function of $h_{2,\mu}^{\mathrm{VW}}[\mathbb{CP}^2] = 3 \left(h_1^{\mathrm{VW}}[\mathbb{CP}^2] \right)^2 H_{\mu}$ SU(2) Vafa-Witten invariants on \mathbb{CP}^2 where $h_1^{\text{VW}}[\mathbb{CP}^2] = \eta^{-3}(\tau)$ This is not an accident! The anomaly equation for $g_{\mu}^{(1,...,1)} \equiv g_{n,\mu}$ and $\kappa = 1$ coincides with the anomaly equation for the normalized generating functions of SU(n) Vafa-Witten invariants on \mathbb{CP}^2

$$g_{n,\mu} = 3^{1-n} \frac{h_{n,\mu}^{(\mathrm{VW})}[\mathbb{CP}^2]}{\left(h_1^{(\mathrm{VW})}[\mathbb{CP}^2]\right)^n}$$

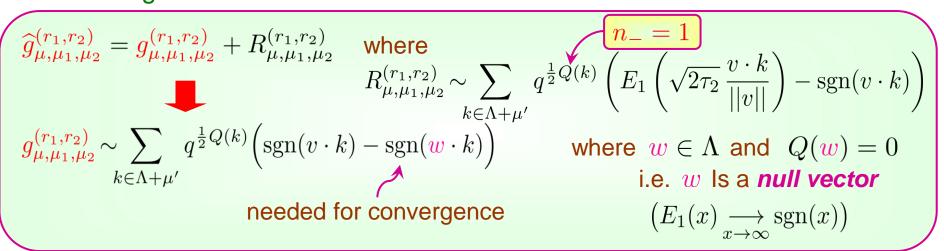
Neither of these solutions generalizes to more general cases

Indefinite theta series

We construct a general solution in terms of *indefinite theta series* Typical indefinite theta series $\sum q^{\frac{1}{2}Q(k)} \Phi(\sqrt{2\tau_2} k)$ $k \in \Lambda + \mu$ $Q(k) = Q_{+}(k) - Q_{-}(k)$ is a quadratic form of signature (n_{+}, n_{-}) Two ways to achieve convergence $\Phi(x)$ piecewise constant $\Phi(x)$ exponentially decaying along negative directions $\Phi(x) \sim \prod \left(\operatorname{sgn}(v_{i,1} \cdot x) - \operatorname{sgn}(v_{i,2} \cdot x) \right)$ **Ex.:** Seigel theta series $\Phi(x) \sim \exp\left(-\pi Q_{-}(x)\right)$ holomorphic, but not modular modular, but not holomorphic construct **mock** (of depth n_{-}) Recipe: [S.A.,Banerjee,Manschot,Pioline '16] replace $\prod \operatorname{sgn}(v_i \cdot x) \mapsto E_n(\{v_i\}; x) \equiv \int_{\mathbb{D}^n} \mathrm{d}x' \, e^{-\pi (x - x')^2} \prod \operatorname{sgn}(v_i \cdot x')$ i=1generalized error functions building blocks of the coefficients $R^{(\{r_i\})}$ $\mu, \{\mu_i\}$

Lattice extension

Consider again the case n = 2:



Problem: in our case $\Lambda = \mathbb{Z}$ with $Q(k) = -2\kappa_0 k^2$ does not have null vectors

Solution: *Extend* the lattice by multiplying by Jacobi theta functions $\hat{\tilde{g}}_{\mu,\mu_{1},\mu_{2}}^{(r_{1},r_{2})}(\tau,z_{1},z_{2}) = \check{g}_{\mu,\mu_{1},\mu_{2}}^{(r_{1},r_{2})}(\tau,z_{1},z_{2}) + R_{\mu,\mu_{1},\mu_{2}}^{(r_{1},r_{2})}(\tau)\theta_{1}^{\kappa r_{1}}(\tau,z_{1})\theta_{1}^{\kappa r_{2}}(\tau,z_{2})$

Each theta function adds 1 dimension to the lattice, but does *not* change Λ^*/Λ

$$\begin{array}{ll} \begin{array}{l} \text{In general} \\ \text{case:} \end{array} & \Lambda = \mathbb{Z}_{-}^{n-1} \mapsto \Lambda_{\text{ext}} = \mathbb{Z}_{-}^{n-1} \oplus \begin{pmatrix} n \\ \oplus \\ i=1 \end{array} \mathbb{Z}_{+}^{\kappa r_{i}} \end{pmatrix} \\ g_{\mu, \{\mu_{i}\}}^{(\{r_{i}\})}(\tau) = \begin{pmatrix} n \\ \prod_{i=1}^{n} \frac{\mathcal{D}^{(\kappa r_{i})}(z_{i})}{(-2\pi\eta^{3}(\tau))^{\kappa r_{i}}} \end{pmatrix} \check{g}_{\mu, \{\mu_{i}\}}^{(\{r_{i}\})}(\tau, \{z_{i}\}) \Big|_{z_{i}=0} \end{array} \right)$$
 solve extended anomaly eq. solve extended anomaly eq.
$$\begin{split} \check{g}_{\mu, \{\mu_{i}\}}^{(\{r_{i}\})}(\tau) &= \begin{pmatrix} n \\ \prod_{i=1}^{n} \frac{\mathcal{D}^{(\kappa r_{i})}(z_{i})}{(-2\pi\eta^{3}(\tau))^{\kappa r_{i}}} \end{pmatrix} \check{g}_{\mu, \{\mu_{i}\}}^{(\{r_{i}\})}(\tau, \{z_{i}\}) \Big|_{z_{i}=0} \end{split}$$

Refinement

We also need to introduce *refinement* $z = \alpha - \tau \beta$ $\alpha, \beta \in \mathbb{R}$ Physically, it corresponds to switching on Ω -background

$$g_{\mu,\{\mu_i\}}^{(\{r_i\})}(\tau) \mapsto g_{\mu,\{\mu_i\}}^{(\{r_i\})\operatorname{ref}}(\tau,z) - \operatorname{mock Jacobi-like form}_{\operatorname{under} \tau \mapsto \frac{a\tau + b}{c\tau + d}, \ z \mapsto \frac{z}{c\tau + d}$$

$$\operatorname{under} \tau \mapsto \frac{a\tau + b}{c\tau + d}, \ z \mapsto \frac{z}{c\tau + d}$$

$$\operatorname{regularizes divergences due to null vectors}_{k = k_v v + k_w w + k_\perp} \longrightarrow w \cdot k = 0 \\ w^2 = 0 \longrightarrow k_\perp = 0 \longrightarrow k_v = 0, \ k^2 = 0$$

$$\operatorname{refinement}_{k \in \Lambda + \mu'} q^{\frac{1}{2}k^2} \left(\operatorname{sgn}(v \cdot k) - \operatorname{sgn}(w \cdot k) \right) \supset \sum_{k_w \in \mathbb{Z}} \operatorname{sgn}((v \cdot w) k_w) \\ q^{\frac{1}{2}k^2} y^{\theta \cdot k} \left(\operatorname{sgn}(v \cdot k) - \operatorname{sgn}(w \cdot k + \beta) \right) \\ \supset \sum_{k_w \in \mathbb{Z}} y^{(\theta \cdot w)k_w} \left(\operatorname{sgn}((v \cdot w) k_w) - \operatorname{sgn}(\beta) \right) \operatorname{geometric}_{\text{progression}} \\ \operatorname{convergent, but poles at} z = 0$$

Results

Goal: Find mock Jacobi-like forms on the extended lattice that are regular at z = 0 and then take the unrefined limit

$$\begin{split} g_{\mu,\{\mu_i\}}^{(\{r_i\})\text{ref}}(\tau,z) &= \text{Sym} \begin{cases} \sum_{m=1}^{n} \sum_{\substack{m \\ j \in \mathbb{N}}} \sum_{k=1}^{n} e^{\{j \in \{s_k\}\}} \prod_{k} \phi_{\nu_k,\mu_{j_k+1},\dots,\mu_{j_{k+1}}}^{(r_{j_k+1},\dots,r_{j_{k+1}})} \end{cases} \\ \text{theta series on } \Lambda_{\text{ext}} \text{ with kernel} \\ \prod_{i=1}^{n-1} \left(\text{sgn}(v_i \cdot k) - \text{sgn}(w_i \cdot k + \beta) \right) \\ \text{One can take } \phi \sim \frac{1}{z^{n-1}} \end{cases} \\ \text{unrefined limit } z \to 0 \qquad \text{the most non-trivial step} \\ \\ \text{Explicit expressions for } g_{\mu,\mu_1,\mu_2}^{(r_1,r_2)} \text{ and } g_{\mu,\mu_1,\mu_2,\mu_4}^{(r_1,r_2,r_3)} \end{split}$$

Conclusions

• We derived modular properties of generating functions of D4-D2-D0 BPS indices (rank 0 DT invariants).

new boundary conditions for the direct integration of topological string

Solution of the modular anomaly for r > 2 (consistency of different solutions)
 reduces the problem to finding just a finite number of polar terms

Possibles extensions:

- compute polar terms for r>2
- CYs with two and more moduli
- elliptic and K₃ fibrations …
- DT invariants of higher rank?

new strategy?

