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Hofstadter butterfly

® [n 1979, D. Hofstadter considered an interesting 2d electron model in a magnetic field.
[Hofstadter'79]

® How to explain? Relation with supersymmetric field theory! [Hatsuda Katsura Tachikawa'16]



Hofstadter butterfly



2d electron in lattice with magnetic field

® 2d electron in a square lattice with spaceing a: by tight
binding approximation

Pya
h

® Adding a uniform and perpendicular magnetic field B / /

BT =p+eA / /
which satisfy commutation relation .
(A, M,] = —ike(d A, — d,A,) = —iheB / /

Hamiltonian of electron becomes

H=2 — +2c
cosh—i- cos

—

H:e%nx+e7%nx+eg Yy + e ‘gn



Harper’s equation

® Replacing (a/R)ly,, by operators x,y
H _ eix 4 efix 4 eiy + efiy
with the commutation relation

ia’eB . :
[x,y] = = i magnetic flux through a plaquette. B
® Equivalent to a 1d relativistic QM model where ¢ is h. I / /

® Harper's equationn / /
Y(x + @) + P(x — @) + 2 cos(x)ih(x) = Ev(x)

Introducing x = n¢ + ¢ and 1,(5) = ¥(ngp + 9)

Ynt1 + Yn_1 + 2cos(ng + 6), = E,



Energy spectrum at rational flux

® The model simplifies when flux is rational [Hofstadter'79]
(;52271'@:271'%, P,QeN,(P,Q)=1.
® Harper's equation is periodic n — n+ @, so that Bloch wavefunciton can be defined,
Vn(0) = € un(8, k) W/ tniq(d, k) = un(6, k).
® Energy spectrum is computed by the polynomial characteristic (secular) equation

FP/Q(E75, k) = det(HQ = EIQ) =10

with
2 cos & el e ik
e 'k 2cos(d + 27rg) ek
Ho(8, k) = e ik 2cos(d +4rg) ek

ek e~k 2cos(d 4 27(Q — 1)%)



Energy spectrum at rational flux, two Bloch angles

® |t can be shown [Hasegawa, Hatsugai,Kohmoto,Montambaux'90]
Fp/q(E,0,0) = 2(cos @k + cos Q) =: 2(cos O + cos b, )
where 0,0, are actually Bloch angles: equation periodic by 0, , — 0, , + 2.

® Varying cos ), + cosf, € [~2,2], degree @ polynomial Fp,q(E,0,0) yields Q energy
bands.



Hofstadter butterfly

® Features of the energy spectrum

» Fractal structure

® Problems of the energy spectrum
» How to understand this picture? What is E as a
function of ¢? Highly non-perturbative!
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® Results:
» Energy trans-series for ¢ = 27/Q that includes full
non-pert. corrections.
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Semi-classical and basic
resurgence analysis



Semi-classical analsys of energy series

® Hamiltonian for the Hofstadter model
H=e"+e ™ +e¥+e ™™ [xy]=io.

® The perturbative energy series can be efficiently calculated by BenderWu package with
Landau Ievel N = 07 17 2, ... [Bender,Wu'73; Sulejmanpasic,Unsal’'16; JG,Sulejmanpasic’17]

EO(N,¢) =4 — (14 2N)¢p+ %(1 + 2N +2N?)¢? + —1%(1 +2N)(1+ N+ N3¢ + ...

® |t is independent of 0, , and divergent

EO(N,¢) = > a(N)o*,  ax(N) ~ NI

k>0

so that non-perturbative corrections are needed.



Instanton corrections

® By path integral analysis of twisted thermal partition function, one finds that for
¢ = 27/Q, there are instanton and anti-instanton in both x- and y-directions

[Duan,JG,Hatsuda,Sulejmanpasic’18]

¢

1/2
E(l) (N:0,¢) :8(COS€X+C059y) <2> e_Ac/¢(1+...), Ac :8C
™

(6x.6y)
® General trans-series

E(N,¢) = EO(N, ¢) + Z E(g:,)ey(’v»@v Eéf,)ey(N7¢) ~ e A/,
n>1

such that
Ee(N,¢) = SE(N, ¢)



Resurgence analysis

s - l. )
e Dominant Borel singularity of EQ)(N, ¢) at
A, A=2A.=16C o°
-60 -40 -20 20 409 60
® | ateral Borel resummation is needed, which is ambiguous. - °
[Veronica, Murad, Amir's talks] " _
® Ambiguity (partially) canceled by 2-instanton (Z7) Tt

corrections [Duan,JG,Hatsuda,Sulejmanpasic’18]
Borel singularities of

FHEON, ¢) = SO EO(N, ¢)+ S 4.7 DEA(N, ¢)+... EO(N =0,¢)
BEO(Q)
with
— ee —
_ 17
EA(N, ¢) = EFD(N, ¢) = e=4/%g™ 3~ T (N)gk. L .
k=0 ==
e Using EQ(N, ¢), by and first few a"*) can be extracted. “

- B  faN



Resurgence analysis

® |n general, there could be multi-instanton contributions to the
ambiguity [Ecalle’s1]

SDEO(N, ¢) =5 exp (Z kA ) EQ(N, ) BO()

k=1

=) (E(O)(N, 6) + ALEO(N, ¢) + .. )

A 2%

————

) e
with @-

AAEO(N, ¢) = SAEM(N, ),
AzAE()( ,6) = SoaECY(N, ¢),

so that Ay 4 encodes contributions from kA sector.
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5d SYM and its resurgent
properties



5d SYM and TS on local P! x P!

® Harper's equation
(X +e™ +e¥+e ™)y =Ep. [xy] =ig,
® |t is related to relativistic Toda lattice [Hatsuda,Katsura Tachikawa'16]
(+e ™ +e+e Y)Y =Eyp, [xy]=ih,
by a double Wick rotation
(Xa Ys h) = (iX, Iya 7¢)
® The latter is quantum Seiberg-Witten curve of 5d A/ = 1 on R* x S SYM with
G = SU(2) or quantum mirror curve of topological string on massless local P! x P!.
® The eigen-energy is NS Wilson loop vev in the magnetic frame [Nekrasov,Shatashvili'09;

Huang,Lee,Wang'22; Wang'23]

E(N/ h) - VVr(tcv h)
r is fundamental representation, and t. = hwv,v = N + 1/2.
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Non-perturbative corrections to NS Wilson loop

® Borel singularities located at &4, ¢, m) With [JG Marino'22]
A, = ptep + qtc + 4x%im, v = (p,q, m),
which are conjecturally central charges of stable D-brane

bound states of charge v with p # 0.

® Non-pert. amplitude [JG Marino'22]

A W= SBPSWA) ) = P pyye—pRn
g Ay ’ 2ri
with D = pd;, D = pdy, and DFjjs o = A,.
® Stokes constant 53:’5 is conjecturally counting of stable
D-brane bound states Q(v) with (v,vc) # 0, where
v = (0,1,0) is ass'd with the magnetic frame of evaluation.

7 N
N | 4
(4 %f *

Borel singularities of W, (h) for
z=E2= 1/32 at :‘:A(Lo’o),
+Ap +1,0), TA@R0,+1)
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Double scaling limit: Borel singularities

\ 1"
o e
7z N .
< e L
A
o= [y
Wi (h) at £A20,0), £A@ 1,0, TAR0,+1) EO(N =0,0) at Ap,0), Ap,+1)

® |n the double scaling limit

h=—¢, te=—¢v, ¢—0
Borel singularities become

A(p,q,m) — A(p,m) = pAc + 47r2im, te.p — Ac. =8C

® The leading singularity is A2 ) = 2A..
® The set of A, q,m) W/ different g collapses to a single A, m). 13



Double scaling limit: non-pert. amplitudes

® Puzzle: Why does only one of a pair of singularities survive?
® The DS limit of non-perturbative amplitude [Codesido,Marino'17; Marino,Schwick'24]

WO (¢
g(l) = h 78 (t ’h) ex (faatFl\-T:#Sc(tmh))

omi Ot -
2 2v
e (e Y )
= Ns.clles ——v
o \fw+12)) \ ot Mot ) i
Fsing Free

® The amplitude of the other one of a pair of singularities is obtained by [Marino,Schwick'24]

(¢7 V) - (7¢7 71/)
and it vanishes as [Marino,Schwick'24; JG,Xu'24]
2
o o (V2T ) L,
r( )

-v+1/2
14



Double scaling limit: Stokes constants

® Stokes constants [Marino,Schwick'24; JG,Xu'24]
BPS —27'riqu
S(pr) = P p q.r) :

® Puzzle: But what 5(p 5’,

where wall-crossing happens.

7?7 As ¢ — 0, t. = —¢v — 0, we approach the conifold singularity,

Weak coupling regime (z < 1/16) Strong coupling regime (z > 1/16)
-.\ “ I.- o %y © ‘,' .
R e
(4 =] L s .,
She =16 Sao=4

15



side do you take?

® |n the case of Hofstadter butterfly, when ¢ > 0
E<4 = z=1/E>>1/16 2

we approach the conifold point from the strong
coupling regime.

® Numerically, by large order analysis of E(O)(N,¢),
we also find

St
S.A(2.0) = 5(2:’5’)”% = 4.

Flux
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Non-perturbative corrections from supersymmetric field theory

® The non-pert. corrections at 2-instanton level from Stokes phenomenon is

AA(z,o) E(O)(V7 (/5) = SA(z,o) E(II)(V7 ¢)
® The 2-instanton amplitude is

1 OE(® (1/ o)

T 2
ED(y,0) = £0(1,) = 5= 5 exp (22 s c(te))

te——ov
h——o

® The Stokes constant is
SApg = S(S;,rg)ng =4

(2,0)
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Trans-series for Hofstadter
butterfly



Exact WKB method

® To solve a 1d non-relativistic QM model

52000 + V(u(x) = Ev()

one can apply the exact WKB method.

e \WKB ansatz o
wQ):en3<%/‘PQﬂhM%>

where P(x, h) is a formal power series
P(x,h) = Py(x)h"
n>0
® P,(x) for n > 1 can be solved recursively with the initial condition Py(x), which is the
classical momentum subject to

Po(x)? = 2(E — V(x))

18



® Perturbative quantum period [Voros'83]
1 [
HE,B) = L / P(x, h)dx
T Ja V(x)

It is a formal power series which is not Borel
summable for i > 0. E

8

® Non-perturbative quantum period

* I . 71
fD(E, h) - _9i / P(X, h)dX class. allowed  class. forbn

az

It is a formal power series which is Borel summable
for h > 0.

19



All-orders Bohr-Sommerfeld QC

® The naive Bohr-Sommerfeld QC

€(E) = Vol(E) = — / Po(x)dx = v, v € N+ 1/2,
™

Jay P

® The all-orders Bohr-Sommerfeld QC

[Dunham,Bender,Robnik,Romanovski,. . .]

t(E, h) = Vol(E, h) = hw.

aN

¥
__4

is equivalent to
eQwit(E,fL)/ﬁ +1=0.

from which the perturbative energy series E(O)(l/, h) can be
calculated.

20



Exact quantisation condi

® By using appropriate boundary conditions and connection
formulas, the Exact Quantisation Conditions (EQCs) for

many 1d QM models have been written down. .
Viz

[De\abaere,Zinanustin,Jentschura,AIvarez,Dunne,Unsal,. . ]
® The EQCs usually take the form of X X 5
h—0
1+Va= f(VA’ VB) 0 class. allowed  class. furh’n‘

with Voros symbols

- t(E,R) tr(E, k)
VA:eZ'm P VB:eiDh

21



Exact quantisation conditions

® As an example, the Cosine Model with Schrodinger equation

_%8)2(’1/}(X) + cos(x)1(x) = Ey(x)

has the EQCs Vi)
1+ VI (14 Vg) — 24/ VIV cosf = 0 ) L ‘

for respectively ImA > 0 and Imh < 0.

—_—
class. allowed  class. forb'n

® The two EQCs are equivalent, connected by the
Delabaere-Dillinger-Pham formula [Delabaere,Dillinger,Pham’93]

S DYy = FEW(1 + V)2

22



Structure of full energy trans-series

® The EQCs imply a universal structure of the full trans-series [van Spaendonck,Vonk'23]

oo n—1

Eo.,c(v,h) = EQW,m) + Y > " tnm(Oxy, ) E™ (v, )

n=1 m=0

® The n-instanton amplitudes have a model-independent expression

™ (OEO) (v, h
E("’"’)_<80V) (8 a(V”’ )e"fD<”ﬁ>/ﬁ>7 tp(v,h) = Ac + O(h)

® The trans-series coefficients are model-dependent and are solved from the specific
EQCs. They also depend on Stokes sign € = £1 such that

5 (N, ) = SEVEy  11(N, h)
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Full trans-series for Hofstadter butterfly

® Conjecture: the same universal structure of full
trans-series also applies for relativistic 1d QM models
such as Hofstadter butterfly. [1G,xu24]

oo n-1 The trans-series coefficiensts
Eo,,.c(v;h) = EOW, )+ ">t m(bs.y, ) E"™ (v, h) o are
n=1 m=0
n\m 0 1 2
® The n-instanton amplitudes are o)
1 —
™
(n,m) _ o\" ( ¢) e Nto (v,h)/ o Ij 672
E = (= 2 53
C ‘9” (97r o o o
3 +

6r 7w 6n3

0= (—l)N“(cos 0, + cosb,)

® |n the case of Hofstadter butterfly

EO(v,0) = W(te, h)

te——ov?
h——¢

tp(v, ¢) = O, Fns,c(tc, )

te——pv
A 24



Decomposition of trans-series

® The full trans-series can be decomposed in terms of two trans-series [van Spaendonck,Vonk'23]

full = minimal ® medium
Such that medium trans-series
oo n—1
0)
Eo., (v.0) = ESh(v,61€54/2) + D Wamlbxy) ESe™(v,¢1€54/2)
n=1 m=0
minimal trans-series minimal trans-series

® Minimal trans-series (Stokes data)

oo n—1
Enin(v,610) = EQ,0) + 3 3 vam(@)EC™ (1, 9)
n=1 m=0
® Medium trans-series (symmetry data)
oo n—1
Ena(, 8:85y) = EO,6) + 30~ wam(6y JEO™ (v, 9)
n=1 m=0

25



Minimal resurgent structure

® Suppose the Voros symbols satisfy the

DDP formula for positive h EQ \
A
y(-&-)VA _ y(—)VA(l + VB)SA \\\ A (gaw)
® The minimal resurgent structure along R ju\\\ 5o '
iS [van Spaendonck,Vonk'23] \\ 59) 5. e
\
AME (1/ }) = 5;# (2¢, o)( 4, D) ) \bs )

Ag Elm v, ¢) = ;“:I #E(nqLZl,qul)(y’ 9). e ED) &) 7o

26



Minimal trans-series

® The minimal trans-series is defined by

oo n—1

ESw,¢10) = EO(, )+ 33~ o™ v, nEC™™ (1, )
n=1 m=0
with 1
—1)—
Va,m = HB""m+1(1!5172!527 0 o .)7 Sk = %

® The minimal trans-series encodes entirely the Stokes data, and it has the property that
FSDEQ (o) = SEQ (0 + Sa)
® For any ¢ > 0, the Borel resummation of E(QZ. is ambiguity-free and real
FSREN(=Sa/2) = SERN(+54/2) € Ry

In the case of Hofstadter butterfly, S4 = 4.
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Medium and full trans-series

® The medium trans-series is defined by

oo n—1
Ers'loe)d( 7¢;9X7y) >¢ +ZZan 7y E(nm (V ¢)
n=1 m=0
so that the full trans-series as
oo n—1
E9X7y7,7(1/, d)) - Ersﬁz](l/, ¢; U) I Z Z Wn,m(ox,y mln ( ,d) (7)
n=1 m=0

satisfies
Et (v,0) = SHEy, | 55,20, 9)
® The medium trans-series encodes dependence on additional parameters (symmetry data)
which arise due to symmetries of the model.
® They can be solved from the EQCs of the Voros type

1+Va= f(VA, VB).
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Full trans-series

® |n the case of Hofstadter butterfly, an EQC of the Voros

type is unknown. Wi, m
] . . for ¢ =27/Q
® By comparing with numerical spectrum, we computed
Wn m(0x,y) up to 6-instanton order for ¢ = 27/Q. m 0 1 2
® Conjecturally [JG xu'24] Wi ©
’Tl' 92
Wn7m: mBmm_‘_l(l!rl,...) W2 m 0 ﬁ
. W- _9 + 93 0 973
with the generating series m T 6w 673
1 o 0 = (—1)""*(cos b, + cos b))
Z N = —arcsin ————-.
: ™ A+ At
Jjz1

29



Full trans-series

® Number of matching digits between ng)ty(N7 ¢) and Y(i)ng_sz(N, ¢) as a function of ©
with increasing instanton orders.

2 » 2
104
10+ 1 F 1
................................................................................ 0 5» 0
-2 -1 1 2 -2 -1 1 2
¢ =2r/13,N =0 ¢ =2r/13,N =1
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Conclusion and discussion

® We have found the full energy trans-series for Hofstadter model when ¢ = 27/Q

oo n—1
Eo,,w5a/2(N,8) =ESNFSa/2) + D> Wam(Oey )ES (F54/2)
n=1 m=0

with S4 = 4 and explicit formulas for Er(nfr)]
Hofstader with 5d N =1 SYM.
® Conversely, it implies the EQCs of the Voros type [JG,xu'24]

1+ V71 +Ve) - ZW(COS 0x + cosf,) = 0.

for respectively Im¢ > 0 and Im¢ < 0.
® The two EQCs are equivalent, due to the DDP formula

and w, ,, by exploiting relationship between

S HVs =714 V)t
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Discussion

® Unfortunately, the medium trans-series coefficients
Wp,m do not work for generic ¢ = 27P/Q, let alone
irrational ¢.

® For ¢ =27P/Q with P > 1, one primary energy
band splits to P sub-bands [JG xu24] Al

P=2 splitting

Energy

1
cos By + cosf, = §FQ/p(27TW170,0,0) aal

P=3 splitting

® This indicates an S-symmetry ¢ — 472 /.

26 i
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Discussion

® To study the fractal structure, it is beneficial to
perform perturbative expansion at ¢ = 27P/Q.

® Consider expansion at % =1/m,say 1/nm =1/3,
and using é defined by

as expansion parameter [JG Xu'24]
bwp (¢) ~ e 8¢/%

® This also indicates the S-symmetry ¢ — 47r2/gz§.

oR

Flux

N

2
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Coefficients of medium trans-series at generic ¢/(27) = P/Q.

Perturbative expansion at ¢/(27) = P/Q and its non-perbative corrections.

® First principle derivation of the EQCs of the Voros type. [Pietro's talk]

Other models such as triangular lattice or honeycomb lattice.

® Universal energy trans-series structure for other relativistic QM models.
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Thank you for your attention!
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