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Overview

1 Integral Representation of WRT Invariants

2 AEC for WRTk(Σ(p1, ..., pn))

3 Integral Representation of GPPV Invariants

The results I will be presenting are based on joint projects with
1 J. E. Andersen and S. Hindson,
2 J.E. Andersen, L. Han, Y. Li, D. Sauzin and S. Sun and
3 Y. Murakami.
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Classical Chern-Simons Theory

Let G = SU(2) with Lie algebra g. Let M be a 3-manifold and let
A ∼= Ω1(M, g) denote the space of G-connections on the trivial
principal G-bundle

M ×G → M.

Let G ∼= C∞(M,G) denote the space of gauge transformations.
Consider the Chern-Simons action CS : A/G → R/Z given by

CS([A]) =
1

8π2

∫

M
tr(A ∧ dA+

2

3
A ∧A ∧A) mod Z.

For a G-connection A, let FA := dA+ 1
2 [A ∧A] be the curvature.

Then A solves the Euler-Lagrange equation if and only if A is flat

δACS = 0 ⇐⇒ FA = 0.

Set
MFlat(M,G) = {A ∈ A : FA = 0}/G.
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The Witten-Reshetikhin-Turaev Invariant WRTk(M,L, µ)

Let k ∈ Z+. Let W+ denote the set of dominant integral positive
weights of g, let θ be the longest root (normalized: ⟨θ, θ⟩ = 2) and

Λk := {λ ∈ W+ : 0 ≤ ⟨λ, θ⟩ ≤ k}.
For a triple (M,L, µ) of a 3-manifold M with a framed oriented link
L and a labelling µ ∈ Λ

π0(L)
k , consider the level-k WRT invariant

WRTk(M,L, µ) ∈ C.

This is the mathematical model of Witten’s path integral formula
for the expectation of the Wilson operator in Chern-Simons theory
(where the inclusion Λk ↪→ Repf.d(G) is implicit):

∫

A∈A/G
e2πikCS(A)

∏

K∈π0(L)

tr(µ̃K ◦HolA(K))DA.

Witten argued that this gives a geometric extension of the colored
Jones polynomial to links in general 3-manifolds.
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Witten’s Asymptotic Expansion Conjecture

Consider the case L = ∅. Recall: The space of classical solutions
δCSA = 0 is given by the moduli space of flat G-connections

MFlat(M) := {[A] ∈ A/G : FA = 0}.

This is a compact space, and we define the finite set

CS(M) := CS(MFlat(M)) ⊂ R/Z.

Set r = k + 2. Motivated by the path integral picture:

Conjecture 1 (The asymptotic expansion conjecture)

For each θ ∈ CS(M) there exists Wθ(x) ∈ ∪∞
m=1C((x1/m))such

that the following large k asymptotic expansion holds

WRTk(M) ∼
∑

θ∈CS(M)

e2πirθWθ(r
−1).
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The AEC for Three-Manifolds with colored Links (M,L, µ)

Fix k0 ∈ Z+, µ0 ∈ Λ
π0(L)
k0

. Let k = sk0, s ∈ Z+, and set µk = sµ0.
Let CG be the space of conjugacy classes of G. Set
c := ιk0(µ0) ∈ C

π0(L)
G where ιk : Λk ↪→ C

π0(L)
G is given by

ιk(λ) = [exp(λ/k)].

Let MFlat(M,L, c) be the moduli space of flat G-connections on
M \ L with meridional holonomy around a component K ∈ π0(L)
within the conjugacy class cµ(K). Set

CS(M,L, c) := CS(MFlat(M,L, cµ)) ⊂ R/Z.

Conjecture 2 (The asymptotic expansion conjecure (AEC))

For each θ ∈ CS(M,L, c) there exists Wθ(x) ∈ ∪∞
m=1C((x1/m)) :

WRTk(M,L, µk) ∼
∑

θ∈CS(M,L,µ)

e2πirθWθ(r
−1), as k tends to +∞.
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The AEC is open in general, but proven in some cases including:
Lens spaces, torus bundles by work of Jeffrey, Garoufalidis,
Andersen–Jørgensen.
Mapping tori of surface diffeomorphisms of finite order in the
mapping class group by work of Andersen,
Andersen–Jørgensen–Himpel–Martens–McLellan.
The mapping tori of a surface diffeomorphism φ : Σ → Σ of
two-manifolds for which MFlat(Σ)

φ is smooth, by work of
Charles, Andersen–M, Ios.
Surgeries on the figure 8 knot due to work of Charles–Marche,
and Andersen–M (unpublished) building on Andersen-Hansen.
New: Seifert fibered integral homology spheres by work
of Andersen–Han–Li–M–Sauzin-Sun as explained later today. .
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Analytic Continuation and Chern-Simons Theory

Analytic Continuation: Witten and Garoufalidis
independently argued that resurgence appears through analytic
continuation of the partition function as a function of k

k 7→
∫

A/G
e2πikCSD.

Quest: We seek an analytic continuation of WRT invariants
of triples (M,L, µk) as a function of the level

k 7→ WRTk(M,L, µk)

which illuminates the asymptotic expansion conjecture and the
connection to Chern-Simons with complex gauge group

GC = SL(2,C).

Approach: R-matrix formula for WRT invariants and analytic
continuation of the R-matrix via Faddeev’s quantum dilog.
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The Colored Jones Polynomial J(L, µ, tr) ∈ Z[t±r ]

Colored Jones: Set tr = eπi/(2r). For a framed oriented link
L ⊂ S3 and µ ∈ Λ

π0(L)
k consider the colored Jones polynomial

J(L, µ, tr) ∈ Z[t±r ].

Quantum Integers: Identify Λk = {1, ..., r − 1}. For n ∈ Λk

define the quantum integer and quantum factorial

[n]r := (t2nr − t−2n
r )/(t2r − t−2

r ), [n]r! :=

n∏

j=1

[j]r.

WRT-prefactor: Let σL be the signature of the linking matrix and

αr(L) := exp

(
σL3πi(2− r)

4r

)(√
2

r
sin
(π
r

))π0(L)+1

.
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Surgery: There exists a pair of disjoint framed oriented links
Li ⊂ S3, i = 1, 2, ν(L1) ∼= ∪m

j=1(S
1 ×B2)j , with an

orientation-preserving diffeomorphism (M,L) ∼= (S3
L1
, L2). Here

S3
L1

:=


S3 \ ν(L1)

⋃

j=1,...,m,

(B2 × S1)j


 / ∼,

where, for j = 1, ...,m, we identify ∂(S1 ×B2)j = ∂(B2 × S1)j .

Definition 1 (Reshetikhin–Turaev)

WRTk(M,L, µ) = αr(L1)
∑

λ∈Λπ0(L1)
k

Jλ∪µ(L1∪L2, tr)
∏

K∈π0(L1)

[λK ]r.

The pair L1, L2 is unique up to Kirby equivalence, and Reshetikhin
and Turaev proved WRTk(M,L, µ) is an invariant of the Kirby
class.
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Let U = Uqr(sl(2,C)), qr = e2πi/r. Let R ∈ U � U be the
universal R-matrix. For m ∈ Λk, let lm = (m− 1)/2, let
Bm = {−lm, ..., lm} and let V (m) = CBm with basis (e

(m)
j )j∈Bm .

For n,m ∈ Λk, the R-matrix induces an isomorphism

Cr,n,m : V (n) � V (n) → V (m) � V (n).

For all i, w ∈ Bn and j, v ∈ Bm, define C±
r (n,m, i, j, v, w) ∈ C to

be the matrix coefficient of Cr,n,m w.r.t. these basis elements, i.e.
(second equation is proven by Reshetikhin-Turaev)

C±
r (n,m, i, j, v, w) := (e(m)

v � e(n)w )∗C±
r,n,m

(
e
(n)
i � e

(m)
j

)
=

{
(±(s−s))±(w−i)

[±(w−i)]!
[ln±w]!
[ln±i]!

[lm∓v]!
[lm∓j]! t

P±(i,j,v,w)
r δi+j

v+w, if ± (w − i) ≥ 0,

0 otherwise,

P±(i, j, v, w) = ±(4ij − 2(w − i)(i− j)− (w − i)(w − i± 1)).
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The R-matrix approach to J(L, µ, tr) is combinatorial and depends
on a decomposition of a link diagram into elementary tangles

b b−

d d−

C C−

θ θ−
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In the R-matrix approach to the colored Jones polynomial
J(L, µ, tr), one associates R-matrices to crossings:

V(n)

Cn,m C−1
m,n

V(m)

V(m) V(n)

V(n) V(m)

V(m) V(n)

,

Let E be the set of edges of the graph of a link diagram D of L.
Recall Bm is the basis index of V (m) for m ∈ Λ. Set

Bµ :=×
e∈E

Bµe .

Each crossing c ∈ C has a sign ϵc ∈ {±}, two colors µc ∈ Λ2
k and

four edges xc ∈ E4. The R-matrix approach equals J(L, µ, tr) to
∑

x∈Bµ

∏

c∈C
Ccϵ
r (µc, xc)

∏

θ∈Twists

t
ϵθ(λ

2
θ−1)

r

∏

∪∈
⋃−

t−4x∪
r

∏

∩∈
⋂−

t4x∩
r .
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Faddeev’s quantum dilog: Let γ = π/r,∈ C,Re(r) ≥ 2 and set

Sγ(z) := exp

(∫

R(+)

ezy

4 sinh(πy) sinh(γy)y
dy

)
, |Re(z)| < γ + π,

R̃r(z) := exp

(
πiz(z + 1)

2r

)
Sγ (π − (2z + 1)γ)

Sγ (π − γ)
.

The following equations holds, where (1) holds for ζ ∈ C with
|Re(ζ)| < π and (2) is a consequence and holds for m ∈ Λk

(1 + eiζ)Sγ(ζ + γ) = Sγ(ζ − γ), (1)

[m]r! = R̃r(m)((i2 sin(γ)))−m. (2)

The first extends Sγ (and consequently R̃r) to a meromorphic
function on all of C. We have

Pole divisor of z 7→ R̃r(z): P(r) = Z≤−1 + rZ≤0,

Zero divisor of z 7→ R̃r(z): Z(r) = Z≥0 + rZ≥1.
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Let y = (y1, y2), resp. x = (x1, x2, x3, x4), be coordinates on C2,
resp. C4. Set zj = (yj − 1)/2 and x̃ = x1 + x2 − x3 − x4.

Q±
r (x) := ±2x1x2 − (x4 − x1)(x1 − x2)

r
+

x3 − x2 ∓ (x1 − x4)

2
,

R±
r (y, x) :=

R̃r(z1 ± x4)R̃r(z2 ∓ x3) exp (πiQ
±
r (x))

R̃r(±(x4 − x1))R̃r(z1 ± x1)R̃r(z2 ∓ x2)
× R̃r(0)

R̃r(−(x̃)2)
.

Lemma 2 (Andersen–M–Hindson)

For all n,m ∈ Λk, i, w ∈ Bn, j, v,∈ Bm it holds that

C±
r (n,m)v,wi,j = R±

r (n,m, i, j, v, w).

The right hand side is a meromorphic function of (n,m, i, j, v, w)
and depends analytically on r.
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Recall the surgery link (L1, L2) : (M,L) ∼= (S3
L1
, L2). Let

D = D1 ∪D2 be a diagram of L1 ∪ L2. Set Cπ0(L1)
y × CE

x = Cd.
Define Ωr(D,D2, µ) ∈ M(∧d(Cd)) to be equal to

αr(L1)
∏

c∈C
Rϵc

r (yc, xc)
∏

k∈K
t
ϵk(y

2
k−1)

r

∏

∪∈
⋃−

t−4x∪
r

∏

∩∈
⋂−

t4x∩
r

∧

e∈E

cot(π(xe − ze))dxe
2πi

∧

K∈π0(L1)

cot(πyK) sin(γyK)dyK
sin(γ)2πi |y2=µ

.

Let Sr ⊂ Cπ0(L1) be the |π0(L)|-torus enclosing [1, r − 1]|π0(L1)|.
Let Tr ⊂ Cd be the fibre bundle over Sr with fibre over y ∈ Sr

given by the |E|-torus enclosing×e∈E [−ze(y), ze(y)].

Theorem 3 (Andersen–M–Hindson)

WRTk(M,L, µ) =

∫

Tr

Ωr(D,D2, µ).
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The semi-classical approximation of Faddeev’s quantum dilog:

Li2(z) = −
∫ z

0

log(1− u)

u
du,

Sγ(ζ) ≈ exp
( r

2πi
Li2(−eiζ)

)
.

Using this approximation leads to a formal semi-classical
approximation of WRTk(M,L, µk) of the form

I(r) =

∫
exp(2πirW (D,D2, µ))Vol

where W (D,D2, µ) is holomorphic. Let Σ(D,D2, µ) denote the
set of critical values of the phase function W (D,D2, µ).

Conjecture 3 (Andersen–M–Hindson)

CS(M,L,GC, c) ⊂ Σ(D,D2, µ) mod Z.

This is expected from the resurgence picture and builds on work of
Yoon, and on work of Garoufalidis–Thurston–Zickert.
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The AEC for Seifert Fibered Homology Spheres

Let n ≥ 3, let (pj , qj)nj=1 ⊂ Z+ × (Z \ {0}) with
(pj , pl) = (pj , qj) = 1 and P

∑n
j=1

qj
pj

= 1, where P := p1 · · · pn.
Consider the associated Seifert fibered homology sphere

X = Σ(p1, ..., pn).

Theorem 4 (Andersen–Han–Li–M–Sauzin–Sun)

The AEC holds for X, where n ≥ 3. Moreover, for each
θ ∈ CS(X) \ {0}, we have that r−1/2Wθ(r

−1) ∈ C[r].

Our proof builds on work of Andersen-M and Han–Li–Sauzin–Sun,
and involves the Gukov–Putrov–Pei–Vafa invariant:

Ẑ(X, q) ∈ q∆XZ[[q]],∆X ∈ Q.

In the following, we outline the proof.
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The Lawrence–Rozansky formula

Let y be a complex variable, set g(y) := iy2/(8πP ) and define

F (y) = (ey/2 − e−y/2)2−r
r∏

j=1

(ey/(2pj) − e−y/(2pj)).

Consider the oriented contour C ′ := Reπi/4 ⊂ C. LR showed

WRTk(X) =

∫

C′

F (y)erg(y)

2πi
dy−

2P−1∑

m=1

Res

(
F (y)erg(y)

1− e−ry
, y = 2πim

)
.

There exists polynomials pm(x) ∈ C[x] such that

−
2P−1∑

m=1

Res

(
F (y)erg(y)

1− e−ry
, y = 2πim

)
=

2P−1∑

m=1

erg(2πim)pm(r).

William Elbæk Mistegård Integral Models of Quantum Invariants of Three-Manifolds



Integral Representation of WRT Invariants AEC for WRTk(Σ(p1, ..., pn)) Integral Representation of GPPV Invariants

Let W0 be the Ohtsuki series of X. Let B be the Borel transform.
Set q = e2πiτ , τ ∈ H. Set c =

√
2πiP . Define

(
χ̃(m)

)∞
m=m0

⊂ Z by

G(z) := (zP − z−P )2−n
n∏

j=1

(z
P
pj − z

− P
pj ) = (−1)n

∞∑

m=1

χ̃(m)zm.

Joint with Andersen we showed in a paper from 2022 the following

B(W0)(ζ) =
4c

πi
√
ζ
G
(
e
c
√
ζ

P

)
, CS∗C(X) =

i

2π
P(B(W0)) mod Z,

Ẑ(X, q) =

∞∑

m=1

χ̃(m)q
m2

2P = v.p.
λ√
τ

∫

iR+

e−
ξ
τ B(W0)(ξ) d ξ,

WRTk(X) = lim
q→e2πi/r

Ẑ(X, q).

This builds on Lawrenze–Rozansky 95, Lawrenze–Zagier 97 and
Gukov–Mariño–Putrov 16.
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The above theorem shows in particular, that Ẑ(M, q) is essentially
of the following form, where j,N ∈ N and g : Z → C is N -periodic

Θ(τ, g, j) :=
∑

m≥1

mjg(m) exp

(
2πiτm2

N

)
, τ ∈ H.

Resurgence and quantum modularity properties of such series are
proven by Han, Li, Sauzin and Sun (2023).

Definition 5 (Zagier 2010)

Let Γ ⊂ SL(2,Z) be a subgroup, let Q ⊂ Q be preserved by Γ and
let h ∈ 1

2Z. A strong quantum modular form on (Γ,Q, h) is a map

f : Q → C[[x]], α 7→ fα(x),

such that for all α ∈ Q, γ ∈ Γ, there is an analytic function gγ on
R \D, with D being finite, with the following Taylor series at α

gγ(x+ α) := fα(x)− (c(α+ x) + d)−hfγ(α)(γ(x+ α)− γ(α)).
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For any root of unity ξ, let W (X, ξ) ∈ Q[ξ] be Habiro’s extension
of the WRT invariant, i.e. W (X, e2πi/r) = WRTk(X), r = k + 2.

Theorem 6 (Andersen–Han–Li–M–Sauzin–Sun)

There is a family of explicitly defined resurgent formal series
Ẑα(x), α ∈ Q, such that the following asymptotic expanion holds

Ẑ(X, τ) ∼ Ẑα(τ − α), as τ → α.

Further, for all α ∈ Q \ Z we have that

lim
τ→α

Ẑ(X, τ) = WRTk(X, e2πiα),

and Q ∋ α 7→ Ẑα ∈ C[[x]] is a strong higher depth quantum
modular form with congruence subgroup Γ1(4P ).
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Towards proving the AEC we identify M(X) := MFlat(X,G) with
a union of moduli spaces of flat G-connections on the Seifert
surface (a compact oriented genus 0 surface with n marked points)

Σ0,n = X/U(1)

with special holonomy around the boundary circles ∂j , j = 1, ..., n,
of discs centered at the exceptional orbits of X → Σ0,n.

Definition 7 (Label set for boundary holonomies)

Let R(p1, ..., pn) be the set of l = (l1, ..., ln) ∈×n
j=1{0, ..., pj} :

1 For j ≥ 2 we have that lj is even. Let tl denote the number of
indices j ∈ {1, ..., n} with lj = 0 mod pj . Then tl ≤ n− 3.

2 For every J ⊂ {1, ..., n} with odd cardinality, we have that

∑

j∈J

pj − lj
pj

+
∑

j∈{1,...,n}\J

lj
pj

> 1.
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For l ∈ Zn, j ∈ {1, ..., n}, set C(l)
j := diag

(
eπilj/pj , e−πilj/pj

)
and

M(Σ0,n, C
(l)) := MFlat(Σ0,n)

⋂

j∈{1,...,n}

hol−1
∂j

([C
(l)
j ]).

Let T be the trivial connection. Then M(X) = MIrr(X) ⊔ {T}

Theorem 8 (Andersen–Han–Li–M–Sauzin–Sun)

For all l ∈ R(p1, ..., pn) we have a non-empty connected moduli
space

M(Σ0,n, C
(l)) = MIrr(Σ0,n, C

(l)) ̸= ∅.
Pullback with respect to Σ0,n ↪→ X induces a homeomorphism

MIrr(X) ∼=
⊔

l∈R(p1,...,pn)

MIrr(Σ0,n, C
(l)).

This builds on work of Jeffrey.
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Let RC(p1, ..., pn) be the set of l ∈×n
j=1{0, ..., pj} satisfying the

first of the two conditions defining R(p1, ..., pn). Let d = n− 3

Theorem 9 (Andersen–M 22, (building on Kirk–Klassen 90))

We have that π0(MFlat(X,GC)) ∼= RC(p1, ..., pn) and:

CS(ρl) = −P

4




n∑

j=1

lj/pj




2

∈ Q/Z, ∀l ∈ RC(p1, ..., pn).

Further, the set CSC(X) \ {0} is equal to
{
−m2

4P
∈ Q/Z : m ∈ Z, is divisible by at most d of the p′js.

}

and if p1, ..., pj are all primes, the Chern-Simons action induces a
bijection

RC(p1, ..., pn) → CSC(X) \ {0}.

William Elbæk Mistegård Integral Models of Quantum Invariants of Three-Manifolds



Integral Representation of WRT Invariants AEC for WRTk(Σ(p1, ..., pn)) Integral Representation of GPPV Invariants

Conclusion: Using
The identification π0(MFlat(X,G)) ∼= R(p1, ..., pn),

the formula CS(ρl) = −P
4

(∑n
j=1 lj/pj

)2
,

the result limq→qr Ẑ(X, q) = WRTk(X),

and an analysis of Ẑ(X, q) in the limit q → e2πi/r,
we arrive at

Theorem 10 (Andersen–Han–Li–M–Sauzin–Sun)

The asymptotic expansion conjecture holds for X and the WRT
invariant admits an asymptotic expansion of the form

WRTk(X) ∼
∑

θ∈CS(X)

e2πirWθ(1/r),

where W0 is the Ohtsuki series and r−1/2Wθ(r
−1) ∈ C[r] for all

non-zero Chern-Simons invariants θ.
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The Gukov–Pei–Putrov–Vafa invariant: of a plumbed
3-manifold M with a plumbing graph (tree) Γ with a negative
definite linking matrix B and a choice of s ∈ spinc(M) is a q-series
convergent for |q| < 1

Ẑs(M, q) ∈ q∆sZ[[q]], ∆s ∈ Q.

Residue formula: For each vertex v set Fv(z) =
(
z − 1

z

)2−deg(v).
Set δ = (deg(v))v∈V . Let a ∈ (ZV + δ)/2BZV ∼= spinc(M).

Ẑa(M, q) := q
ψ
4 · v.p.

∮

|zv |=1

∏

v∈V

d zv
2πizv

Fv(zv)Θ
−B
a (z⃗),

Θ−B
a (z⃗) :=

∑

l⃗∈2BZs+a

q−
(⃗l,B−1(⃗l))

4

∏

v∈V
zlvv .

Topological invariance: This was proven to be a topological
invariant of (M,a) by Gukov-Manolescu.
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The following theorem was conjectured by GPPV, where

Ẑr(M ; τ) :=
∑

b∈(ZV +δ)/2BZV
zr(b) · Ẑb(M, e(τ + 1/r))),

zr(b) :=
1

2(q2r − q−2
2r )
√
det(B)

∑

a∈ZV /BZV
e(−ratB−1a−atB−1b).

Theorem 11 (Murakami, 24)

lim
τ→0

Ẑr(M ; τ) = WRTk(M).

1

q14 WRT: WRT(M) : N→ C

GPPV: Ẑb(M) : D → C

D = {q : |q| < 1} Analytic Continuation:

∑
b zr(b)Ẑb(M, qr) = WRTk(M)
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Non-semisimple Quantum Invariants: Let M be a negative
definite plumbed 3-manifold. Consider the non-semisimple invariant
defined by Costantino, Geer, Patureau & Mirand (r ∈ Z+ \ 4Z+)

Nr(M,ω) ∈ C, ω ∈ H1(M,Q/2Z) \H1(M,Z/2Z).

For each s ∈ Spinc(M) let zr(ω, s) ∈ C be a certain constant
defined in Constantino–Gukov–Putrov 2023. Set

Ẑr(M,ω; τ) :=
∑

s∈Spinc(M)

zr(ω, s)Ẑs(M, e(τ + 1/r)).

The following was conjectured by Costantino–Gukov–Putrov and
proven by them for the smaller class of Y -shaped plumbing graphs

Theorem 12 (M–Murakami)

For any sector S ⊂ H the following limit holds as τ ∈ S tends to 0

lim
τ→0

Ẑr(M,ω; τ) = Nr(M,ω).
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Generating Function. For v ∈ V let mv ∈ H1(M) be the
meridian of the corresponding component of the surgery link.
Define ω̃ ∈ (R/2Z)V by ω̃v = ω(mv), ∀v ∈ V . We can assume that

ω̃v /∈ Z/2Z, ∀v ∈ V.

Let Q denote the quadratic form associated with −B (where B is
the linking matrix). Recall Fv(x) = (x− 1/x)2−deg(v), ∀v ∈ V , set
ẽ = (1, ..., 1) ∈ ZV and e(x) = e2πix. Define

Gω,r(x) :=
∑

α∈ 1
2
(ω̃+rẽ)+ZV /rZV

e

(−Q(α)

r

)∏

v∈V
Fv

(
e
(αv

r
+

xv
2πi

))
.

Then
Gω,r(0) = Nr(M,ω).

The Pole Divisor: of x 7→ Gω,r(ix) is

Pω,r =
⋃

v∈V :deg(v)≥3,

α∈ 1
2
(ω̃+re)+Zm/rZm

{
x ∈ CV :

2πiαv

r
+ ixv ∈ πiZ

}
⊂ RV .
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Gaussian Reciprocity (version due to Deloup and Turaev)

Let L be a lattice of finite rank n equipped with a non-degenerate
symmetric Z-valued bilinear form ⟨·, ·⟩. Consider the dual lattice

L′ := {y ∈ L � R | ⟨x, y⟩ ∈ Z for all x ∈ L}
Let 0 < m ∈ |L′/L|Z, u ∈ 1

mL, and h : L � R → L � R be a
self-adjoint automorphism such that

h(L′) ⊂ L′, and m
2 ⟨y, h(y)⟩ ∈ Z, ∀y ∈ L′.

Let σ be the signature of x 7→ ⟨x, h(x)⟩. Recall e(x) := e2πix.
Then the following holds

∑

x∈L/mL

e

(
1

2m
⟨x, h(x)⟩+ ⟨x, u⟩

)
=

e(σ/8)mn/2

√
|L′/L| |deth|

∑

y∈L′/h(L′)

e
(
−m

2
⟨y + u, h−1(y + u)⟩

)
.

William Elbæk Mistegård Integral Models of Quantum Invariants of Three-Manifolds



Integral Representation of WRT Invariants AEC for WRTk(Σ(p1, ..., pn)) Integral Representation of GPPV Invariants

In CGP23 the conjecture is proven for Γ being Y -shaped and
assuming an open condition on B. The key step is an application
of Gaussian reciprocity. Following this and using ideas from
Murakami 2024, we prove the following, where, for each
ν ∈ {±1}V , we define the linear map Iν : CV → CV , the quadratic
form Q−1

ν : CV → C and the sequence {Gν
ω,r,ℓ} ⊂ C as follows

Iν((xv)v∈V ) := (νvxv)v∈V , Q−1
ν (x) := −xtItνB

−1Iνx,

Gω,r(x) =
∑

ℓ∈(deg(v))v∈V +2ZV≥−1

Gν
ω,r,ℓ exp

(
Iν(ℓ)

tx
)
.

Lemma 13 (M-Murakami)

Ẑr(M,ω; τ) = 2−|V |
∑

ν∈µV2

∑

ℓ∈(deg(v))v∈V +2ZV≥−1

Gν
ω,r,ℓe

(
τQ−1

ν (ℓ)

4

)
.
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Gaussian integration: Let B′ ∈ Mm×m(C) be a symmetric and
non-degenerate m×m matrix with positive definite imaginary part,
and let w ∈m. Then

∫

Rm
exp

(
i

2
xB′x+ iwx

)
dmx =

√
(2πi)m

det(B′)
exp

(
− i

2
w(B′)−1w

)
.

Stationary phase: Let B′ ∈ Mm×m(C) be a symmetric
non-degenerate m×m matrix with semi-positive definite real part.
Let G ∈ C∞

0 (Rm;C). For each j ∈ {1, ...,m} define Dj := −i ∂
∂xj

,
and define DB :=

∑
i,j(B

−1)i,jDiDj . For every sector S ⊂ H the
following Poincare asymptotic expansion holds as τ ∈ S tends to 0
and ρ = 2πiτ

(
det

(−B′

πρ

))1/2 ∫

Rm
exp

(
xtB′x

ρ

)
G(x)dx ∼

∞∑

l=0

ρl
Dl

B(G)

4ll!
(0).
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Let ε > 0 be a small positive parameter. For each
ν ∈ µV

2 = {−1, 1}V , define Γν := iεν + RV . An application of
Gaussian integration to Lemma 14 gives the result below, where

Ẑω,r,l :=
1
4ll!

(∑
v,w∈V B−1

v,w
∂

∂xv
∂

∂xw

)l
(Gω,r)(0), ∀l ∈ Z≥0.

Theorem 14 (M–Murakami)

The integral representation (3) holds, and for any sector S ⊂ H an
application of the method of steepest descent to the right hand
side of (3) gives the asymptotic expansion (4) as τ ∈ S tends to 0

Ẑr(M,ω; τ) =
∑

ν∈µV2

(
det(B)

(8π2iτ)|V |

) 1
2
∫

Γν

exp

(
Q(x)

2πiτ

)
Gω,r(ix)dx,

(3)

Ẑr(M,ω; τ) ∼ Nr(M,ω) +

∞∑

l=1

Ẑω,r,l(2πiτ)
l. (4)
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Generalization to WRT Invariants

Consider the WRT invariant WRTk(M) and Ẑr(M ; τ). Let

Gr(x) :=
∑

α∈ZV /(2rZ)V
e

(−Q(α)

4r

)∏

v∈V
Fv(t

2αv
r exv).

In comparision with Gω,r, it is now non-trivial to show that the
prinicpal part at x = 0 vanish, and that Gr(0) = WRTk(M). This
is done by Murakami 2024. Our method then gives

Theorem 15 (M–Murakami)

Ẑr(M ; τ) =
∑

ν∈µV2

(
det(B)

(8π2iτ)|V |

) 1
2
∫

Γν

exp

(
Q(x)

2πiτ

)
Gr(ix)dx,

Ẑr(M ; τ) ∼ WRTk(M) +

∞∑

l=1

Ẑr,l(2πiτ)
l.
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