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The focus today will be on connections among these.

Motivation: A class of string theory backgrounds features BPS sectors described by
each of the above, implying that some kind of relation must hold. The physical
picture suggests a broader mathematical structure encompassing all three.

Understanding these connections leads to
> Clarifying how different BPS sectors interact with each other
> New computational tools, and exact results, for enumerative invariants

> Predictions of new properties & structures from physical arguments
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1. Overview of relevant BPS sectors
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M-theory on toric Calabi-Yau threefolds

Geometric engineering

M-theory : X x S x R*

5d BPS states: compact Cy4, Ca
M5: Cy x ST xR
M2: Co x pt xR
Counting: KK modes

D4, D2, DO
generalized DT

Mirror / Seiberg-Witten description

1IB string theory: Ys x R*
D3: sLag x R

Tsa[X]: S xR?

monopole string : ST x R

instanton particle : R

‘BPS index’

mirror curve X

calibrated 1-cycles >©<



3d-5d systems

If L is a noncompact special Lagrangian with b1 (L) = 1, and we introduce

M-theory : X x S x R* Tsq[X]: S'xR*
U U
M5: L x S x R? Tag[L] : ST x R2

new BPS sectors emerge, from T34[L] and its interaction with T54[X]

Hpps = Hsa © Hza D Hzd—54
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3d BPS states: vortices of T3,4[L]

Ts4[L] admits a description as an Abelian 3d N = 2 gauge theory.

On S x R?, vacua are parameterized by a complex curve

/ vacua E

FI coupling

> If L is a ‘toric lagrangian’, ¥ coincides with the mirror curve of X

> For a knot conormal L = L, it coincides with the augmentation curve
At large FI coupling a distinguished (Higgs) vacuum hosts BPS vortex excitations
U

Their counts are related to open GW/LMOV invariants: given (C,9C) C (X, L)

M2: CxS!xpt vortex :  S! x pt



3d-5d BPS states: kinky vortices

A new kind of BPS states appears by viewing R C R? as time, and S! x R as space.

Heuristically, quantize solutions of BPS vortex equations on S x R, with (possibly)
different vacua ¢, j at each end, and flux shifted by n.
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7

= 3d-5d boundstates D 5d BPS states by closed concatenations.
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BPS sectors recap

M-theory on X x S x R* with an M5 brane on L x S! x R2 includes a novel 3d-5d
BPS sector of ‘kinky vortices'. These play a central role by encoding both

> 3d BPS vortices in the i = j sector, in the limit R — oo.
> 5d BPS states as boundstates of (ij,n) and (ji, —n) kinky vortices.

While 3d and 5d BPS states have clear mathematical counterparts in open GW and
generalized DT theory, there is no obvious counterpart for 3d-5d BPS states.

> Is the 3d-5d CFIV index some kind of enumerative invariant?
> How, exactly, are DT and open-GW invariants related to CFIV indices?

> What new properties/structures does embedding 3d and 5d into 3d-5d predict?



2. Exponential networks
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Ts4[L] gives an algebraic curve in C* x C*
Y: F(z,y)=0

with a natural presentation as ramified covering over C% with sheets y; ().
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Exponential networks

Ts4[L] gives an algebraic curve in C* x C*
Y: F(z,y)=0

with a natural presentation as ramified covering over C% with sheets y; ().

The study of 3d-5d BPS states motivates a definition of exponential networks.

Mainly two pieces of data:
> Geometric: a web of trajectories on C} shaped by > and 9.

> Combinatorial: topological information attached to each trajectory.

©



Geometric data

An (ij,n) trajectory is labeled by a pair of sheets (4,j) and by an integer n € Z,
and has a shape z(t) governed by

dl :
(logy; — logy; + 2min) fo =,

29



Geometric data

An (ij,n) trajectory is labeled by a pair of sheets (7, j) and by an

and has a shape z(t) governed by

dlog x

(logy; — logy; + 2min) p

Branch points y;(x) = y; () source (ij,0) trajectories

9

integer n € Z,

(i5.0)
\ (5i,0)

(i4,0)
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Geometric data

An (ij,n) trajectory is labeled by a pair of sheets (4,j) and by an integer n € Z,

and has a shape z(t) governed by

dlog x

(logy; — logy; + 2min) =e

dt

Branch points y;(x) = y; () source (ij,0) trajectories

Punctures of 3, where y;(z) ~ (z — x.)* source

(32, km) trajectories, with m € Z

New trajectories can be generated at intersections of
(ij,m) and (kl,m)

9
(i5.0)
\ (5i,0)
— ¥

(ii,n)




Combinatorial data

Each trajectory carries:
> paths a on X from y;(z) to y;(x) winding n times around Cj

> a weight pu € Q associated to each path
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Combinatorial data

Each trajectory carries:
> paths a on X from y;(z) to y;(x) winding n times around Cj

> a weight pu € Q associated to each path

ij,n) (ij,n)

(ik,m +n)

(jk,m)

s
/) —

This data is determined by the topology of the underlying network, according to a set
of rules motivated by physics.




Physical content of exponential networks

The ODE that shapes trajectories is a geometrization of the BPS equations for (ij,n)
kinky vortices. Trajectories track their solutions.



Physical content of exponential networks

The ODE that shapes trajectories is a geometrization of the BPS equations for (ij,n)
kinky vortices. Trajectories track their solutions.

A point x4, € C* parameterizes (the Fl coupling of) T34[L].

If 24, belongs to a trajectory (ij,n) for a given ¥, there are kinky vortices with

> topological charge encoded by combinatorial data between |7}, |J)
> CFIV index equal to p
> ¥ = arg Z the phase of BPS central charge



Physical content of exponential networks
The ODE that shapes trajectories is a geometrization of the BPS equations for (ij,n)
kinky vortices. Trajectories track their solutions.
A point x4, € C* parameterizes (the Fl coupling of) T34[L].

If 24, belongs to a trajectory (ij,n) for a given ¥, there are kinky vortices with

> topological charge encoded by combinatorial data between |7}, |J)
> CFIV index equal to p
> ¥ = arg Z the phase of BPS central charge

Conversely, the 3d-5d BPS spectrum of the QFT is computed by detecting all
trajectories that sweep across xy), varying ¢.

= Exponential networks encode the 3d-5d BPS spectrum of kinky vortices.



Physical content of exponential networks
The ODE that shapes trajectories is a geometrization of the BPS equations for (ij,n)
kinky vortices. Trajectories track their solutions.
A point x4, € C* parameterizes (the Fl coupling of) T34[L].

If 24, belongs to a trajectory (ij,n) for a given ¥, there are kinky vortices with

> topological charge encoded by combinatorial data between |7}, |J)
> CFIV index equal to p
> ¥ = arg Z the phase of BPS central charge

Conversely, the 3d-5d BPS spectrum of the QFT is computed by detecting all
trajectories that sweep across xy), varying ¢.

= Exponential networks encode the 3d-5d BPS spectrum of kinky vortices.

The construction is inspired by a 3d uplift of t¢t* geometry. It recovers counts of 2d
(2, 2) soliton kinks in the limit R — 0. Consistency checks will follow.



3. DT invariants & 5d BPS states



Critical phases

Boundstates of BPS states from conjugate sectors (ij,n) and (ji, —n) carry only
flavour charges of T54[L], corresponding to quantum numbers of T54[X].

= Boundstates of 3d-5d states probe the space of stable 5d BPS states.
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Critical phases

Boundstates of BPS states from conjugate sectors (ij,n) and (ji, —n) carry only
flavour charges of T54[L], corresponding to quantum numbers of T54[X].

= Boundstates of 3d-5d states probe the space of stable 5d BPS states.

Since (ij,n) and (ji, —n) trajectories are anti-parallel, boundstates appear at critical
values Y. iy = arg ZsBdPS, where (generalized) saddles appear.

“e_ N\ N
3 /7 /?\

The BPS index () for each saddle is determined by combinatorics of concatenations

— @Q?ig

Q=1



O]pl (—1) D Opl (— 1) [Eager Selmani Walcher] [Banerjee L Romo]

X: >—< Y. l14y+ay+Quy>=0

Several critical phases:

Yer = arg Zpo
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Yer = arg Zpo .

Zp2 = élOng QD2) =1
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Ver = arg Zp2-po

e
Zdo.0o = % + %ng, Q(D2-D0) = 1

As well as a whole tower (peacock pattern) of saddles with Q(D2-kD0) = 1 for k € Z.

15 / 29



Op1yp1 (=2, —2)

X ):( T Qrly+y N+ Q4 —1=0

Much richer example, involving wall-crossing, and ‘wild’ spectrum [Banerjee L Romo]
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Op1yp1 (=2, —2)

X ):( T Qrly+y N+ Q4 —1=0

Much richer example, involving wall-crossing, and ‘wild’ spectrum [Banerjee L Romo]

However, there is a ‘degenerate’ chamber of moduli space where the BPS spectrum
can be computed exactly  [1] [Del Monte L] [Closset Del Zotto]

Qxy+k(n+72)=1  QE(n +72) + kypo) = —2
Q(Eys +k(y3 +74)) =1 Q(kypo) = —4

with £ € N, and (v;, vi+1) = —2
vi: D4 y2: D2¢D4  43: DOD2,D2;D4 4 : D2,D4

16 / 29
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moduli of the underlying sLag

T — MD3 — £D3 (T‘ = bl(D3))

(Strata of) Lp3 can be modelled by foliations on C, whose leaves are solutions of
the exponential networks ODEs. [Kiemm Lerche Mayr Vafa Warner] [Eager Selmani Walcher]

Saddles are degenerate leaves/sLags, corresponding to fixed points of the T" action.
= Q computes x(M p3) as a sum over F.P. (localization) [ganerjce L Romo]

Q(D3) = (=1)" x(Mp3)

Closely related to an earlier proposal of enumerative invariants of sLags [Joyce].

17 /29



4. Stokes data of ¢DEs & 3d-5d BPS states
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Stokes graphs

In the limit R — 0 exponential networks reduce to Stokes graphs of WKB analysis of
ODEs, also known as spectral networks.

At finite R, the ODE is replaced by a g-difference equation (¢DE) corresponding to a
certain quantization of ¥ with §& = q g

F(z,y) =0 ~ F(&9) ¢(z,q) =0.

Natural expectation: exponential networks are Stokes graphs of gDEs.
For first-order ¢DEs this is known to work. For example, a WKB analysis of

. B
F=1-9-2, P(z,q) =exp [ D 7jbhnflLiZ_n(m)

n>0
shows that Borel sums of v feature Stokes jumps at trajectories of the network.

[Garoufalidis Kashaev] [Grassi Hao Neitzke] [Alim Hollands Tulli]

Open questions:
> generalization beyond first-order

> are Stokes constants related to BPS data?
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Any 2nd order gDE can be presented in ‘involutive’ form

F=g+4 ' —2T(2,q) = (qz)+v¥(¢ z) =2T(z,q) ¥(z).

The standard WKB ansatz

P(z) = exp (/z S(m,h)d?m) with  S(z,h) = i Sy (z) hE

k=—-1

gives y(z) = exp S—_1 ().
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F=g+g7 ' —2T(2,q9) = (gx)+v(e 'e) =2T(z,q) ().
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* dx . ad k
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F=g+g7 ' —2T(2,q9) = (gx)+v(e 'e) =2T(z,q) ().
The standard WKB ansatz
* dx . ad k
Y(x) = exp S(z, h) — with  S(z,h) = Z Sk(z) h
z k=—1

gives y(z) = exp S—1(x). It follows that solutions are labeled by (s, N) € Zs X Z

¥s,n (2) = exp (% /z(logys + 271 N) df) (1+0(n)

However the WKB ansatz is difficult to work with, because this is a h-difference
equation, not a differential one.

19 /29



g-Riccati form

Introducing R(z) := 1(gx)/¢(z), the involutive 2nd-order gDE takes the form
R(z)R(¢™'x) — 2T (z)R(¢ 'z) +1=0

a nonlinear, but 1st order ¢DE.
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g-Riccati form

Introducing R(z) := 1(gx)/¢(z), the involutive 2nd-order gDE takes the form
R(z)R(¢™'x) — 2T (z)R(¢ 'z) +1=0

a nonlinear, but 1st order ¢DE.

This admits two solutions R4 (z, ) = Y70 o Ry, 4+ (z)hF

1 = 1
Rn,ﬂ:(m) =t Z 7Rm7l,iallogz (Rnfm,:i: - 2Tn7m)

n
+ # Z Rn—l,i <81logz (Ro,j: - 2710) — 2Tl> .

2,/T¢ —11=1

The full formal series is known recursively in closed form.

20 /29
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To compute 7 from R, we observe that log R and S are in the same cohomology class

IOg R($7 h) = rLS(I, h) + halog zx(l‘7 h) .

It follows that

xT !
i v (z) = eX@0)=X@) oxp (%/ (log R4 (', h) + 2mi N) d ) .
EN)

X
.’,U/

gives explicit formal series solutions. Moreover, this also shows that

. 27 (N — M)
Vi (@) = i (@) (%)

any two solutions with same sign differ by a g-periodic factor.

Over the field of g-periodic functions the space of solutions is just 2-dimensional.



Monodromy data

Monodromies of gDEs encode the transport of globally analytic solutions, which in
WKB analysis are built by patching together Borel sums with ‘Stokes' & ‘Voros' data.



Monodromy data
Monodromies of gDEs encode the transport of globally analytic solutions, which in
WKB analysis are built by patching together Borel sums with ‘Stokes’ & ‘Voros' data
Working assumptions
> Borel summation of 14 n yields analytic functions ¢ .

> Borel plane singularities cross R~ (Laplace transform integral contour) iff
Ys,,N,; is maximally dominant over v, N, .



Monodromy data
Monodromies of gDEs encode the transport of globally analytic solutions, which in
WKB analysis are built by patching together Borel sums with ‘Stokes' & ‘Voros' data.
Working assumptions
> Borel summation of 14 n yields analytic functions ¢ .

> Borel plane singularities cross R~ (Laplace transform integral contour) iff
Ys,,N,; is maximally dominant over v, N, .

By WKB ansatz, the second condition coincides with
trajectories of type (s1s2,0N).



Monodromy data

Monodromies of gDEs encode the transport of globally analytic solutions, which in
WKB analysis are built by patching together Borel sums with ‘Stokes' & ‘Voros' data.
Working assumptions

> Borel summation of 14 n yields analytic functions ¢ .

> Borel plane singularities cross R~ (Laplace transform integral contour) iff
Ys,,N,; is maximally dominant over v, N, .

By WKB ansatz, the second condition coincides with \
trajectories of type (s1s2,0N). \

Stokes graphs of involutive 2nd order ¢DEs feature a single -

b
building block b+ » / 30

N
N



Monodromy data
Monodromies of gDEs encode the transport of globally analytic solutions, which in
WKB analysis are built by patching together Borel sums with ‘Stokes' & ‘Voros' data.
Working assumptions
> Borel summation of 14 n yields analytic functions ¢ .

> Borel plane singularities cross R~ (Laplace transform integral contour) iff
Ys,,N,; is maximally dominant over v, N, .

By WKB ansatz, the second condition coincides with \
trajectories of type (s1s2,0N). \

Stokes graphs of involutive 2nd order ¢DEs feature a single -

b
building block b+ » / 30

In a basis of suitably normalized vanishing solutions, Stokes matrices given by

o _( €& i (=N
so=(7F 0) e=(2)

generalizes Voros' single-valuedness condition to include log-monodromy (£ # 0)

S(=0gB g(=8) — ¢=tos



Monodromy data

Monodromies of gDEs encode the transport of globally analytic solutions, which in
WKB analysis are built by patching together Borel sums with ‘Stokes' & ‘Voros' data.
Working assumptions

> Borel summation of 14 n yields analytic functions ¢ .

> Borel plane singularities cross R~ (Laplace transform integral contour) iff
Ys,,N,; is maximally dominant over v, N, .

By WKB ansatz, the second condition coincides with \\\
trajectories of type (s1s2,0N). \

,,,,,,,,, o
Stokes graphs of involutive 2nd order gDEs feature a single B

b
building block b+ » / 30

In a basis of suitably normalized vanishing solutions, Stokes matrices given by

o _( €& i (=N
so=(7F 0) e=(2)

generalizes Voros' single-valuedness condition to include log-monodromy (£ # 0)

S(=0gB g(=8) — ¢=tos

= The Stokes coefficient (1 = 1) x & coincides with the combinatorial data encoded
by the exponential network (CFIV index of kinky vortices).
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Voros data captures changes in normalization between branch points.
0 1Yyppr Yopr 0
Toor = ( 1 Topr = —1
ZYbb’ 0 0 Ybb/
The two types of transport matrices correspond to relative signatures of BP's.

> Specializes to Fock-Goncharov coordinates in 1st case, if £ = ¢ = 0.

> Related to quantum periods [Grassi Hatsuda Marino] [Kashani-Poor].

Monodromies can be readily computed by composition of Stokes and Voros data.

Example: the gMathieu equation quantizes ¥ of local P! x P! (el Monte L]

S M =X T XL o) T XStz 4p0)

+ X% (v1=Y2=7po)+(v2+74)
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5. Structures in open Gromov-Witten invariants
& 3d BPS vortices



Field-theoretic properties of kinky vortices

3d-5d BPS kinky vortices plays a central role, but have not been studied as BPS
states in QFT. Important to test our heuristic QFT picture of these.
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3d-5d BPS kinky vortices plays a central role, but have not been studied as BPS
states in QFT. Important to test our heuristic QFT picture of these.

Compare with standard vortices in R?

T34[L] ‘ St x R? vacua y;(z) € &

standard vortices | S x pt | single Higgs vacuum at S1 = 9R2

kinky vortices pt xR two vacua at SL_ = 9(S! x R)

A basic check: in the limit R — oo with the same Higgs vacuum at both Szltoo, kinky
vortices should reduce to standard ones.
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From geometric engineering of T54[L], vortices arise from open strings/M2 in (X, L).
Their free energy is encoded by (g = 0) LMOV invariants

Wyortex = — Z an,B Ll?(Qﬁxk) ’ (nkﬂﬂ € Z)

k>1 B

A strong test of our QFT interpretation of kinky vortices is to show that ng g can be
computed from CFIV indices p, in the R — oo limit.

3d N = 2 BPS vortices have finite size governed by the Fl coupling
L G

At large ¢ vortices become pointlike Reore < R, and S1 x R ~ R2.

This limit takes = oc e=¢ — 0. This is crucial to compute y, due to wall-crossing.

jumps of g1



Let U;,g = limg 0 pin, 8-

Conjecture [Gupta L] After an infinite sequence of wall-crossings, the generating function
of kinky (#i,n) vortices in the Higgs vacuum |i) stabilizes to

DD mnpe"Q = =33 mp log(1—2"QP).

n>1 B k>1 B

29



Let “2,5 = limg 0 pin, 8-

Conjecture [cupta L] After an infinite sequence of wall-crossings, the generating function
of kinky (#i,n) vortices in the Higgs vacuum |i) stabilizes to

DD mnpe"Q = =33 mp log(1—2"QP).

n>1 B k>1 B

Tests

» For X = C3 and L a toric brane with framing f = 0, the exact CFIV spectrum
can be computed as a function of . The conjecture is proved in this case.



Let “2,5 = limg 0 pin, 8-

Conjecture [cupta L] After an infinite sequence of wall-crossings, the generating function
of kinky (#i,n) vortices in the Higgs vacuum |i) stabilizes to

DD mnpe"Q = =33 mp log(1—2"QP).

n>1 B k>1 B

Tests

» For X = C3 and L a toric brane with framing f = 0, the exact CFIV spectrum
can be computed as a function of . The conjecture is proved in this case.

> For other framings the network is much more involved. A ‘warping’ trick allows
for systematic computations. Results are fully consistent with the conjecture.



Knots-quivers correspondence

In some cases, the LMOV spectrum can organized by a stronger underlying structure
known as ‘knots-quivers’ correspondence [Kucharski Reineke Stosic Sulkowski].

L
. . 7
M2 branes wrapping holomorphic (C,8C) C (X, L) are Q
generated by finitely many disks through linking O0—0O
interactions [Ekholm Kucharski L]. D,

A
D,
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In some cases, the LMOV spectrum can organized by a stronger underlying structure
known as ‘knots-quivers’ correspondence [Kucharski Reineke Stosic Sulkowski].

L
. . 7
M2 branes wrapping holomorphic (C,8C) C (X, L) are Q
generated by finitely many disks through linking O0—0O
interactions [Ekholm Kucharski L]. D,

.

Open problem: this is an empirical observation, how to determine Q from first
principles?

Hints from a QFT interpretation of Q
> Vertices are disks with [0C] = 1, i.e. single-vortex states.

> Links are mixed Chern-Simons couplings of a (dual) QFT description of T'[L].
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Quivers from X (a1

The relation between standard and kinky vortices (LMOV-CFIV) implies
> Vertices of Q are 1:1 with (éi,1) kinky vortices near z = 0

> Mixed CS-couplings govern orbital spin of 2-vortex boundstates, which is
captured by intersections of paths on 3 [sciberg Witten] [Galakhov L Moore]
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Quivers from X (a1

The relation between standard and kinky vortices (LMOV-CFIV) implies
> Vertices of Q are 1:1 with (éi,1) kinky vortices near z = 0

> Mixed CS-couplings govern orbital spin of 2-vortex boundstates, which is
captured by intersections of paths on 3 [sciberg Witten] [Galakhov L Moore]

plt1

(i,N+1) o 0
.

Tests: the proposal has been verified by direct computation for
> toric Lagrangians in C3 and resolved conifold, in various framings (1 & 2 vertices)
> knot conormal Lagrangian of the trefoil knot, in various framings (3 vertices)

> knot conormal Lagrangian of the figure-eight knot, in various framings (5 vertices)

)
@



6. Conclusions
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Summary and outlook

Geometric engineering of M-theory on CY3 with a sLag L has been studied
extensively, with much attention devoted to

5d BPS states <> (generalized) DT theory
3d BPS states <> open GW theory

However, physics provides a much broader framework, including a sector of 3d-5d BPS
states which captures both of the above.

Perhaps the closest to a mathematical definition of 3d-5d BPS states is via Stokes data
of g-difference equations, due to the role of exponential networks in WKB analysis.

> A reasonable goal (?): understand relations among 5d, 3d and 3d-5d sectors as
an interplay among resurgent structures of gDEs, DT and open GW invariants.

> Still, we owe these insights to physical & geometric intuition on BPS states.
More work is needed to make sense of 3d-5d states from these perspectives.

Thank You.
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