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Goal
Resum the formal series Φ̃K

• We consider the formal integral 

defined by formal Gaussian integration, where ,  depend on an hyperbolic knot , and   

formal series in 

• To resum a formal series means building an analytic function

                                analytic 

•  is divergent!!!

Φ̃K(τ) := ∫ Ψ̃(z, τ)B e( −
A
2

z2τ) dz ,

e(z) = exp(2πiz) B > A > 0 K Ψ̃(z, τ) =
∞

∑
n=0

an(z) τ−n

τ

Φ̃K Φ̂K

Φ̃K
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The formal series  — part IΦ̃K
Topological invariant of the knot   [Garoufalidis—Strozer—Wheeler]K

• The formal series  is conjectured to agree to all orders with the asymptotic series of the Kashaev invariant of the knot  [Dimofte—
Garoufalidis]

• The integers  are the Neumann—Zagier data, computed from ideal triangulations of   

• The asymptotic expansion of the complex Chern—Simons (CS) partition function on the knot complement  recovers the 
formal series 

• Theorem [Garoufalidis—Strozer—Wheeler]: for every hyperbolic knot , the formal series  is a topological invariant 

Φ̃K(τ) := ∫ Ψ̃(z, τ)B e( −
A
2

z2τ) dz ,

Φ̃K K

B > A > 0 S3∖K

S3∖K
Φ̃K

K Φ̃K
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41 : (A = 1,B = 2) 52 : (A = 2,B = 3)



The formal series  Ψ̃
The Faddeev’s quantum dilogarithm  [Faddeev]

• The Faddeev’s quantum dilogarithm 

is a meromorphic function of  and  

• Its asymptotics as  is the divergent series 

where  is an eight root of unity 

• Theorem [Kashaev—Garoufalidis]:  is resurgent and its Borel—Laplace sum coincides with 

                                          

Φ(z; τ)

Φ(z; τ) = exp (∫i τℝ+ε τ

e((z + 1 + τ)w/τ)
(e(w) − 1)(e(w/τ) − 1)

dw
w ) ,

τ ∈ ℂ ∖ ℝ≤0 z ∈ ℂ

|τ | → ∞

Ψ̃(z, τ) = μ8 e( −
τ

24
−

1
24τ

−
∞

∑
k=0

(2πi)k−2 Bk

k!
Li2−k(e(z))τ1−k) ,

μ8

Ψ̃(z, τ) Φ(z; τ)

Ψ̃(z, τ) Ψ̂(z, τ) ≡ Φ(z; τ)
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The formal series  — part IIΦ̃K
The resurgent structure [Garoufalidis—Gu—Mariñ o]

• The singularities in the Borel plane are organized in a peacock pattern

• and they are located at the critical values of the Chern—Simons functional 

• The Stokes constants can be computed by solving a q-difference equation 

• The Borel—Laplace resummations of  in a given sector can be expressed in terms of certain analytic functions related to the Andersen
—Kashaev state integral

                                                                          is a linear combination of state integrals

• State integrals should correspond to the partition function of complex Chern-Simons theory on the knot complement 

• The previous statements are conjectures, in general, and numerically checked for   

Φ̃K

Φ̃K Φ̂K

S3∖K

K = 41 and  52
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Main result
Borel—Laplace summation of  [F. —Wheeler]Φ̃K

• A step further in the study of the analytic properties of the formal series 

• We also give an algorithm to compute the correct combinations of state integrals that give the resummation 

• We verify GGM’s numerical computations of the first Stokes constants for  

Φ̃K

Φ̂K

K = 41

6

Theorem [F. —Wheeler]: the series  is Borel—Laplace summable for  and  knotsΦ̃K K = 41 52



Plan

• Borel—Laplace summation and Resurgence

• Warm-up: thimble integrals 

• State integrals for the  and  knots 

• Conclusion 

41 52
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Pistes bleues Pistes rouges Pistes noires

Watch out! 



Borel-Laplace summation and Resurgence 



Borel-Laplace summation and Resurgence
From formal to analytic 

• Summation methods associate to a divergent series  an analytic function  

                                analytic 

Φ̃ Φ̂

Φ̃ =
∞

∑
n=0

n! τ−n−1 ∈ ℂ[[τ−1]]1 Φ̂
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Borel-Laplace summation and Resurgence
Borel-Laplace summation works in three steps

1. The formal Borel transform  

                                analytic 

                                           

ℬ : ℂ[[τ−1]]1 → ℂ{ζ}

Φ̃ =
∞

∑
n=0

n! τ−n−1 ∈ ℂ[[τ−1]]1 Φ̂

∞

∑
n=0

n!
ζn

n!
∈ ℂ{ζ}

1
1 − ζ
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ℬ
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Borel-Laplace summation and Resurgence

2. Analytic continuation in Borel plane  

                                analytic 

                                           

Φ̃ =
∞

∑
n=0

n! τ−n−1 ∈ ℂ[[τ−1]]1 Φ̂

∞

∑
n=0

ζn ∈ ℂ{ζ}
1

1 − ζ
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ℬ

Borel plane

X

Borel-Laplace summation works in three steps

sum



3. The Laplace transform  defined along a ray in the direction  that avoids the singularities

                                analytic 

                                           

The Borel transform is the formal inverse of the Laplace transform 

ℒϑ ϑ

Φ̃ =
∞

∑
n=0

n! τ−n−1 ∈ ℂ[[τ−1]]1 Φ̂

∞

∑
n=0

ζn ∈ ℂ{ζ}
1

1 − ζ

X

Borel-Laplace summation and Resurgence
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ℬ ℒϑ

sum

Borel-Laplace sum

Borel plane

Borel-Laplace summation works in three steps

Hϑ



3. The Laplace transform  defined along a ray in the direction  that avoids the singularities

                                analytic 

                                           

Remark: the Borel-Laplace sum  is uniform (Gevrey) asymptotics to 

ℒϑ ϑ

Φ̃ =
∞

∑
n=0

n! τ−n−1 ∈ ℂ[[τ−1]]1 Φ̂

∞

∑
n=0

ζn ∈ ℂ{ζ}
1

1 − ζ

Φ̂ Φ̃

Borel-Laplace summation and Resurgence

13

ℬ ℒϑ

sum

Borel-Laplace sum

Borel-Laplace summation works in three steps

X

Borel plane
Hϑ

asymptotics



Borel-Laplace summation and Resurgence
The singularities in Borel plane know about exponentially small terms

• What is the effect of the singularity?if the exponentially small terms can be reconstruct from its asymptotics by studying the analytic 
continuation of the Borel transform 

• The analytic continuation of  jumps when crossing a singularity and the jump is given by exponentially small corrections 

[ℒϑ − ℒ−ϑ] 1
1 − ζ

= ∫𝒞1

e−τζ 1
1 − ζ

dζ = −2πi e−τ

Φ̂
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X

Borel plane
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Borel-Laplace summation and Resurgence

• A divergent series  is resurgent if the exponentially small terms can be reconstruct from  itself by studying the analytic 
continuation of its Borel transform 

• The constant  is the so-called Stokes constant, which constitutes part of the information encoded at the singularity 

Φ̃(τ) ∈ ℂ[[τ−1]]1 Φ̃

[ℒϑ − ℒ−ϑ] 1
1 − ζ

= ∫𝒞1

e−τζ 1
1 − ζ

dζ = −2πi
⏟

e−1⋅τ
⏟

−2πi
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X

Borel plane

Hϑ

H−ϑ

Resurgence [É calle 80s]

Residue Singularity



Warm-up: thimble integrals 



Thimble integrals 
The examples of the Airy function 

• Thimble integrals are integrals over the steepest descent contours of a Morse function . Thus, they define analytic functions  

• The asymptotic expansion of  as  is a divergent power series, whose Borel transform has singularities at the critical values of 

f

Ai(τ) = ∫𝒞1

e−τ f ν , where  f(z) =
z3

3
− z , ν = dz

Ai(τ) τ → ∞ f
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𝒞1

The assumption of  being Morse can be relaxed: isolated critical values, but they might be degenerate [Mistergard]f



Thimble integrals 
Thimbles integrals are Borel-Laplace summable 

• Thimble integrals are integrals over the steepest descent contours. Thus, they define analytic functions  

• The asymptotic expansion of  as  is a divergent power series, whose Borel transform has singularities at the critical points of  

•  Thimble integrals are Borel-Laplace transforms, i.e. they are the sum of their asymptotics 

Change of coordinates . Indeed the dependence on the variable  is only at the exponent [F. —Fenyes]  

Use Nevanlinna (or Watson) theorem. Indeed the asymptotics of  holds for  in a sector of opening angle 

Ai(τ) = ∫𝒞1

e−τ f ν , where  f(z) =
z3

3
− z , ν = dz

Ai(τ) τ → ∞ f

ζ = f τ

Ai(τ) θ = arg(τ) ≥ π
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Thimble integrals 
The Stokes constants counts saddle points connections 

• Thimble integrals are integrals over the steepest descent contours. Thus, they define analytic functions  

• The asymptotic expansion of  as  is a divergent power series, whose Borel transform has singularities at the critical points of   

•  Thimble integrals are Borel-Laplace transforms, i.e. they are the sum of their asymptotics 

• The Stokes constants count saddle connections between different critical points and they are computed by Picard—Lefschetz formula  

Ai(τ) = ∫𝒞1

e−τ f ν , where  f(z) =
z3

3
− z , ν = dz

Ai(τ) τ → ∞ f
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State integrals for the  and  knots 41 52



The formal invariant Φ̃K
Recap 

• The formal series we want to resum is 

where  and  is a critical point of the CS functional  

• Recall  is the asymptotic of the Faddeev’s quantum dilogarithm 

• The potential function  is defined as 

which is multivalued!!!

Φ̃Ξ(τ) = ∫ Ψ̃(z, τ)Be( −
A
2

zτ(z + 1 −
1
τ ) + m0zτ)dz ,

Ξ = (A, B, p0) p0 = (z0, m0)

Ψ̃(z, τ) Ψ̃(z, τ) = μ8 e( −
τ

24
−

1
24τ

−
∞

∑
k=0

(2πi)k Bk

k!
Li2−k(e(z))τ1−k)

V

V(z, m) = B
Li2(e(z))

(2πi)2
+

B
24

+
A
2

z(z + 1) + mz

 Gaussian

,
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The volume 
The Riemann surface of V
• Choose a branch of  and restrict the potential  to the Riemann surface 

• Thus, we restrict the image of  to the cylinder  to get a holomorphic Morse function  such that 

where 

• The function  computes the volumes of the  (reps. ) knots with the parameters  and (resp. ) 

• For , we find that  and  are the two critical points and these have volumes 

Li2(e(z)) V Σ

V ℂ/ℤ V : Σ → ℂ/ℤ

V(z, m) = B
Li2(e(z))

(2πi)2
+

B
24

+
A
2

z(z + 1) + mz ,

m = 1,…, A

V 41 52 (A, B) = (1,2) (2,3)

41 (z1, m1) = (−1/6,0) (z2, m2) = (−5/6,0)

V(−1/6,0) = 0.051418⋯i , V(−5/6,0) = − 0.051418⋯i .
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The asymptotics of Faddeev’s quantum dilogarithm 
Different asymptotics in different sectors  

• Choose a determination of 

• The Faddeev’s quantum dilogarithm  is uniform Gevrey asymptotic to  as  for fixed argument of  bounded away 
from the green lines

• There is a non-trivial dependence on , which is the integration variable  

Li2(e(z))

Φ(z; τ) Ψ̃(z, τ) |τ | → ∞ z

z
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θ = arg(−1/τ)

 planez



State integrals
An analytic candidate 

• For every , the descendants of the state integrals are defined as 

where the contour  and 

•  corresponds to AK state integral, where  and 

• Since  is meromorphic, the state integrals  are analytic functions 

• There are linear relations between  — the  are independent 

• Theorem [Andersen—Kashaev]: AK state integrals are topological invariants of the knot , and they are the partition function of the 
Teichmüller TQFT

m, ℓ ∈ ℤ>0

Im,ℓ(τ) := μB
8 q̃−B/24qB/24 ∫𝒥ℓ,τ

Φ((z − ℓ)τ; τ)Be( A
2

z(zτ + τ + 1) + mzτ)dz ,

𝒥ℓ,τ := ( i

τ
e−iAϵℝ≥0 −

1
2

+ ℓ) ∪ ( i

τ
e−i(A−B)ϵℝ≤0 −

1
2

+ ℓ) m, ℓ ∈ ℤ

I0,0(τ) 41 : (A = 1,B = 2) 52 : (A = 2,B = 3)

Φ(z; τ) Im,ℓ(τ)

Im,ℓ max{A, B}

K

24

𝒥0,τ



The steepest descent contours
Steepest descent contours vs state integrals 

• The steepest descent contours are the level set of the imaginary part of , drawn in orange  V
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The thimble through  can be deformed−1/6 The thimble through  cannot be deformed−5/6

For ϑ = π For ϑ ∈ I



The steepest descent contours
Steepest descent contours vs state integrals 

• The steepest descent contours are the level set of the imaginary part of , drawn in orange  

• Can we deform these contours to the state integral ones? NOT always — the state integral contours do not live on the surface  

• Crossing green lines  state integrals will have different leading asymptotics 

V

Σ

⇔
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𝒥0,τ

The thimble through  can be deformed−1/6 The thimble through  cannot be deformed−5/6

For ϑ = π For ϑ ∈ I



The steepest descent contours
Algorithm [F.—Wheeler]

• Every time the thimble intersects a green line, we should flow again with a different volume  

• Collect the contributions that might come from these new contours if they intersect the reals

27

No more contributions from the magenta contour



The steepest descent contours
Algorithm [F.—Wheeler]

• For  the thimble is 

• More contributions are coming from the magenta and violet contours 

ϑ ∈ III
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Main result 
Summability of state integrals [F.—Wheeler]

• Theorem [F.—Wheeler]:  The algorithm terminates. 

Indeed, the Gaussian part of the volume  dominates at infinity   

• Theorem [F.—Wheeler]: The thimble integral gives the Borel—Laplace resummation of . In addition, the thimble integral decomposes 
into a finite sum of state integrals 

V

Φ̃Ξ
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The thimble contour 

The state integral contourcan eformed



The Stokes constants
Geometric computation of the Stokes constants [F.—Wheeler]

• The output of the algorithm for the  knot

• To compute the Stokes constants is enough to compare the analytic functions  in adjacent sectors 

• Remark: Stokes constants do not come only from saddle connections. Actually, the majority of them come from the way we patched 
different state integrals when the thimble crosses a green line

41

Φ̂∙

30

Φ̂I = I0,0 + q2I2,−1 = I0,0 + I1,0
                                                             Φ̂III = −I0,0 + I0,−1 − q4I2,−2+2q2I1,−1 + 2q2I1,−1−4qI0,0

= − I0,0 − I−1,0 − 9qI0,0

Φ̂II = −I0,0 + I0,−1 = − I0,0 − I−1,0



Conclusion 



Conclusion and open questions 

• The formal series  is Borel—Laplace summable for , and its sum is given by a combination of state integrals as 
prescribed by our algorithm 

• The decomposition is computed following the steepest descent contours + patching different asymptotics of Faddeev’s quantum 
dilogarithm 

• The Stokes constants can be computed geometrically

• Fermionic traces in topological strings on toric CY 3-folds are integrals similar to the state integrals, so their asymptotics should be 
Borel—Laplace summable 

• Higher dimensional state integrals, i.e. with  ?—— in progress with J. Andersen, M. Kontsevich and C. Wheeler

Φ̃K K = 41 and  52

z ∈ ℂn
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Conclusion and open questions 

• The formal series  is Borel—Laplace summable for , and its sum is given by a combination of state integrals as 
prescribed by our algorithm 

• The decomposition is computed following the steepest descent contours + patching different asymptotics of Faddeev’s quantum 
dilogarithm 

• The Stokes constants can be computed geometrically

• Fermionic traces in topological strings on toric CY 3-folds are integrals similar to the state integrals, so their asymptotics should be 
Borel—Laplace summable 

• Higher dimensional state integrals, i.e. with  ?—— in progress with J. Andersen, M. Kontsevich and C. Wheeler

Thank you for your attention 

Φ̃K K = 41 and  52

z ∈ ℂn
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