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Introduction

Update on a long-running project about geometric structures defined by DT invariants.

Interacts with ideas around non-perturbative topological string partition functions.

Owes much to Gaiotto, Moore, Neitzke, and many others!

We will give an overview and discuss a new example worked out with Fabrizio Del Monte.

Related to the quiver •⇒ •, Painlevé III3, and pure SU(2) gauge theory (N = 2, d = 4).
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Different perspective to the usual resurgence story

Genus expansion∑
g≥0 Fg (t)λ2g−2

Non-perturbative

free energy

F(t, λ)

BPS invariants

Ωt(γ)

Borel sum

Riemann-Hilbert
problem

Stokes jumps

Asymptotic

expansion

· · ·· · ·

· · ·· · ·
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Analytic continuation of F(t, λ)?

The A-model partition function should exist globally on the stringy Kähler moduli space.

On the other hand, the GW invariants are associated to some particular large volume limit.
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An attempt at an abstract global approach

Our starting data is a CY3 triangulated category D such as Db Lag(Y ) or Db Coh(Y ).

(These will relate to the B-model and A-model partition functions respectively.)

A key role is played by the complex manifold of stability conditions Stab(D).

When D = Db Coh(Y ) this is expected to contain the stringy Kähler moduli space.

The aim is to build a global geometric structure on Stab(D).

*** So far we only understand a few simple examples (e.g. class S [A1]). ***
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Ray diagrams

Associated to D is a lattice Γ ∼= Z⊕n and a skew-symmetric form 〈−,−〉 : Γ× Γ→ Z.

At each point σ ∈ Stab(D) there is a map Z : Γ→ C called the central charge.

Fixing a basis Γ = Zγ1 ⊕ · · · ⊕ Zγn gives local co-ordinates zi = Z (γi ).

Under further assumptions there are also DT invariants Ω(γ) ∈ Q for each class γ ∈ Γ.

We consider the rays spanned by the central charges Z (γ) ∈ C∗ for classes with Ω(γ) 6= 0.

· · ·· · ·

· · ·· · ·
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Riemann-Hilbert problem

Introduce the torus T = HomZ(Γ,C∗) ∼= (C∗)n.

For each ray ` ⊂ C∗ there is a partially-defined S` ∈ Aut(T) satisfying

S∗` (Xβ) = Xβ ·
∏

Z(γ)∈`

(1− Xγ)Ω(γ)·〈β,γ〉

We consider a RH problem which depends on σ ∈ Stab(D) and an element ξ = exp(θ) ∈ T.

Find a piecewise holomorphic map X : C∗ → T with jumps and asymptotics:

X (ε) 7→ S`(X (ε)) as ε ∈ C∗ crosses a ray `,

X (ε) · exp(Z/ε)→ ξ ∈ T as ε→ 0, |ε|−k < ‖X (ε)‖ < |ε|k as ε→∞.
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Categories of class S [A1]

There is an interesting special class of CY3 categories D = D(g ,m).

They are indexed by g ≥ 0 and m = (m1, · · · ,md) with mi ≥ 3.

There is an identification

Stab(D(g ,m))/Aut(D(g ,m)) ∼= Quad(g ,m) := {(C ,Q0)}

• C a compact, connected Riemann surface of genus g ,

• Q0 a quadratic differential on C with simple zeroes and poles of orders mi .

Moroever Γ ∼= H1(Σ,Z)−, where Σ→ C is the double cover {y2 = Q0(x)}, and

Z (γ) =

∮
γ

√
Q0.
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Today’s example: Kronecker quiver

We consider the special case g = 0 and m = (3, 3) and set D = D(g ,m).

Then in fact D = DCY3

(
•⇒ •

)
is the CY3 category associated to the Kronecker quiver.

We have Γ = Zγ1 ⊕ Zγ2 with 〈γ1, γ2〉 = 2.

We consider quadratic differentials on P1 of the form

Q0(x) dx⊗2 =

(
1

x
+ H + tx

)
dx2

x2
.

These are parameterised by the space

M := Stab(D)/Aut(D) ∼=
{

(t,H) ∈ C2 : t(H2 − 4t) 6= 0
}
.
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Kronecker ray diagrams

For class S [A1] categories the DT invariants are counts of finite-length trajectories.

In our Kronecker example there are three possible ray diagrams:

· · ·· · ·

· · ·· · ·

0

Ω(±(γ1 + n(γ1 + γ2))) = 1

Ω(±(γ1 + γ2)) = −2

Ω(±γ1) = Ω(±γ2) = 1
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Solving the RH problem: pencil of flat connections

As above, a stability condition on D defines a quadratic differential

Q0(x) dx⊗2 =

(
1

x
+

H

x2
+

t

x3

)
dx⊗2.

Take (q, p) ∈ C2 with p2 = Q0(q) and also r ∈ C and consider the ODE

f ′′(x) =
(
ε−2Q0(x) + ε−1Q1(x) + Q2(x)

)
f (x),

Q1(x) = − pq2

x2(x − q)
+

2pqr

x2
, Q2(x) =

3

4(x − q)2
+

rq − x

x2(x − q)
+

r2

x2
.

The associated linear system is gauge equivalent to the connection

∇ε = d −

(
r 0

0 −r

)
dx

x
− 1

ε

(
pq 1− qx−1

tx − q−1 −pq

)
dx

x
.
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Expected solution to the RH problem

Now take Xi (ε) to be the Fock-Goncharov co-ordinates of the above connection.

We take the WKB triangulation for the differential ε−2Q0(x)dx⊗2.

This gives the correct discontinuities across rays as in Gaiotto-Moore-Neitke.

Exact WKB analysis should give the required asymptotics as ε→ 0 if we set

ξ(γ) = exp(θ(γ)), θ(γ) = −
∫
γ

Q1(x) dx

2
√

Q0(x)
.

The asymptotcs as ε→∞ are easy if r = 0 but are not proved in general.
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Level sets of the solution to the RH problem

For each ε ∈ C∗ the kernel of dX (ε) defines a half-dimensional sub-bundle Hε ⊂ TX .
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Joyce structure

Take a basis Γ = Zγ1 ⊕ · · · ⊕ Zγn and write zi = Z (γi ), θi = θ(γi ), etc.

The sub-bundle Hε ⊂ TN is spanned by vector fields hi + ε−1vi of the form

hi =
∂

∂zi
+
∑
p,q

ηpq ·
∂2W

∂θi∂θp
· ∂

∂θq
, vi =

∂

∂θi
, ηpq = 〈γp, γq〉,

where W : N → C satisfies Plebański’s second heavenly equations

∂2W

∂θi∂zj
− ∂2W

∂θj∂zi
=
∑
p,q

ηpq ·
∂2W

∂θi∂θp
· ∂

2W

∂θj∂θq
.

There is a complex HK structure on N given in the basis (vi , hi ) by block-diagonal matrices

I =

(
i 0

0 −i

)
, J =

(
0 −1

1 0

)
, K =

(
0 −i
−i 0

)
, g =

(
0 ω

−ω 0

)
, ω = η−1.
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Complex 2-forms

There are closed 2-forms ΩI (w1,w2) = g(I (w1),w2) etc. given explicitly by

Ω0 := ΩJ + iΩK =
1

2
·
∑
p,q

ωpq · dzp ∧ dzq, 2iΩI = −
∑
p,q

ωpq · dzp ∧ dθq,

Ω∞ := ΩJ − iΩK =
1

2
·
∑
p,q

ωpq · dθp ∧ dθq + d

(∑
p,q

∂W

∂θq
· dzq

)
.

We also pull back the symplectic form on T via the solution to the RH problem

Ωε =
1

2
·
∑
p,q

ωpq · dxp(ε) ∧ dxq(ε), Xp(ε) = exp(xp(ε)).

For ε ∈ C∗ there is then a relation

Ωε = ε−2Ω0 + 2iε−1ΩI + Ω∞.
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Tau function

Define a function locally on N × C∗ by the relation

d log(τ) = Θ0 + 2iΘI + Θ∞ −Θε,

where we chose symplectic potentials dΘ0 = Ω0, etc. We can take

Θ0 =
1

2
·
∑
p,q

ωpq · zp dzq, 2iΘI = −
∑
p,q

ωpq · zp dθq,

Θε =
1

2
·
∑
p,q

ωpq · xp(ε) dxq(ε).

Defining Θ∞ is more tricky, but we can restrict to a locus where Ω∞ = 0 and take Θ∞ = 0.
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Back to the Kronecker example

The isomonodromy flows are

t
∂

∂t
− qt

∂

∂H
+

2pq2

ε

∂

∂q
+ 2qr

∂

∂q
− r

εpq2
(q2t − 1)

∂

∂r
,

∂

∂H
− 1

2εpq

∂

∂r
.

The Plebański function is

W =
pq

6(H2 − 4t)

(
tq + (H + 6tq)r + (6H + 12tq)r2 + 8p2q2r3

)
.

The form Ω∞ vanishes on the locus r = 0. With appropriate choices we have

d log
(
τ |r=0

)
= −H

ε2

dt

t
+

p dq

ε
+ d

(
4H

ε2
+

2qp

ε

)
+

1

4πi
x1dx2.

It is a Painlevé III3 τ -function.
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Future directions

Menelaos Zikidis constructs the Joyce structures on all spaces Quad(g ,m).

Are they regular along the locus θ = 0? Has to do with zeroes of the Painlevé τ -function.

Can we construct the Joyce structure for D = Db Coh(ωP2 )?

Construct the twistor space of the Joyce structure directly using the DT invariants.

The twistor lines then give the correct solutions to the RH problem.
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