Hydrodynamic attractors in strongly correlated fermions

Tilman Enss (ITP, Heidelberg University)

ERG Les Diablerets, 23 September 2024

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Keisuke Fujii 2404.12921 (PRL in press)

Attractor in heavy-ion collisions

- fluid behavior observed already soon after collision, before Navier-Stokes valid
- model calculations show converge on attractor for different initial conditions
- observe real-time dynamics in experiment?

Kurkela, van der Schee, Wiedemann, Wu PRL 2020 Berges, Heller, Mazeliauskas, Venugopalan RMP 2021

strongly interacting Fermi gas

dilute gas of 1 and 4 fermions with contact interaction $\mathcal{H} = \int d\mathbf{x} \sum_{\sigma=\uparrow,\downarrow} \psi_{\sigma}^{\dagger} \Big(-\frac{\hbar^2 \nabla^2}{2m} - \mu_{\sigma} \Big) \psi_{\sigma} + g_0 \psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger} \psi_{\downarrow} \psi_{\uparrow}$

Randeria, Zwerger & Zwierlein 2012

hydrodynamics in a Fermi gas: sound diffusion

Patel et al., Science 2020; Li et al., Science 2022; Yan et al., Science 2024

Strong fermion correlations

"Contact" (many-body) pair correlation $g^{(2)}(r) = \langle \hat{n}_{\uparrow}(r)\hat{n}_{\downarrow}(0) \rangle \simeq \mathbf{C} \left(\frac{1}{r} - \frac{1}{r}\right)^2 + \dots$

$\hat{C}(x) = g_0^2 \,\hat{n}_{\uparrow}(x) \,\hat{n}_{\downarrow}(x) = \hat{\Delta}^{\dagger}(x) \hat{\Delta}(x)$ contact operator:

Hamiltonian
$$\hat{H} = \hat{H}_{kin} + \frac{\hat{C}}{g_0} = \hat{H}_{resonant}$$

Fujii & Nishida PRA 2018 Frank, Zwerger & Enss PRR 2020

 $r_0 \lesssim r \lesssim \ell$

local pair $\hat{\Delta}(x) = g_0 \hat{\psi}_{\downarrow}(x) \hat{\psi}_{\uparrow}(x)$

quantum many-body theory

Luttinger-Ward approach (2PI)

Haussmann et al. 2009; Johansen+ 2024; Enss 2024; Dizer+ 2024 Enss, Haussmann & Zwerger 2011, 2012, 2019

Enss 2024

solving the Luttinger-Ward equations in real frequency

$$H = \sum_{\sigma} \int d\mathbf{r} \,\psi_{\sigma}^{\dagger}(\mathbf{r}) \left(-\frac{\hbar^2 \nabla^2}{2m} - \mu_{\sigma} \right) \psi_{\sigma}(\mathbf{r}) \\ + g_0 \int d\mathbf{r} \,\psi_{\uparrow}^{\dagger}(\mathbf{r}) \psi_{\downarrow}^{\dagger}(\mathbf{r}) \psi_{\downarrow}(\mathbf{r}) \psi_{\uparrow}(\mathbf{r}).$$

imaginary frequency: continue analytically (=> E. Gull, ERG 2022) directly in real frequency (Keldysh in equilibrium):

Johansen+ 2024; Enss 2024; Dizer+ 2024

$$\begin{split} S &= \int d\mathbf{r} \int_{0}^{\beta} d\tau \Bigg[\sum_{\sigma} \psi_{\sigma}^{*} \bigg(\partial_{\tau} - \frac{\nabla^{2}}{2m} - \mu_{\sigma} \bigg) \psi_{\sigma} \bigg(\partial_{\tau} - \frac{1}{2m} - \mu_{\sigma} \bigg) \psi_{\sigma} \bigg], \end{split}$$
$$&- \frac{1}{g_{0}} |\Delta|^{2} - \psi_{\uparrow}^{*} \psi_{\downarrow}^{*} \Delta - \Delta^{*} \psi_{\downarrow} \psi_{\uparrow} \bigg], \end{split}$$

$$\operatorname{Im} \Sigma_{\sigma}^{R}(\boldsymbol{p}, \varepsilon) = -\pi \int_{\boldsymbol{p}', \varepsilon'} [f(\varepsilon') + b(\varepsilon + \varepsilon) + \delta(\varepsilon + \varepsilon)] \times A_{p}(\boldsymbol{p} + \boldsymbol{p}', \varepsilon + \varepsilon') A_{\bar{\sigma}}(\boldsymbol{p} + \varepsilon)$$

$$\operatorname{Im} \Sigma_{p}^{R}(\boldsymbol{q}, \omega) = -\pi \int_{\boldsymbol{p}, \varepsilon} [1 - 2f(\varepsilon)] A_{\uparrow}(\boldsymbol{p}) \\ \times A_{\downarrow}(\boldsymbol{q} - \boldsymbol{p}, \omega - \varepsilon).$$

pair spectrum

sharp peaks in real frequency:

- convolution by Fourier transform Johansen, Frank, Lang 2024
- adaptive mesh to resolve peak
 Dizer, Horak, Pawlowski 2024
- linearize inverse propagator
 between grid points
 Enss 2024

Fermions and pairs at unitarity Enss PRA 2024

Fermions and pairs at strong binding (BEC side) Enss PRA 2024

Transport in linear response

- no assumption of "molecular chaos" • inelastic scattering
- shear viscosity from stress correlations (Kubo formula) •

$$\eta(\omega) = \frac{1}{\omega} \operatorname{Re} \int_0^\infty dt \, e^{i\omega t} \int d^3 x \left\langle \left[\hat{\Pi}_{xy}(\boldsymbol{x}, t), \hat{\Pi}_{xy}(0, 0) \right] \right\rangle$$

physical ingredients:

$$\eta(\omega) = (S) (MT)$$

transport via fermions and pairs (superfluid fluctuations) Enss, Haussmann & Zwerger, Annals Physics 2011

Dynamical stress correlations (shear viscosity)

Shear viscosity/entropy of the unitary Fermi gas

Enss, Haussmann & Zwerger 2011

_	
	-
	-
	-
	_
	-
	-

bulk viscosity probes scaling violation

Kubo formula: pressure correlation
$$\zeta(\omega) = \frac{1}{\omega} \int_0^\infty dt \, e^{i\omega t} \int d\mathbf{x} \, \langle [\delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat{p}(\mathbf{x}, t), \delta \hat{p} \, d\mathbf{x} \, \langle \delta \hat{p}(\mathbf{x}, t), \delta \hat$$

dilute quantum gas: pressure fluctuations $\delta \hat{p} = \frac{2}{3}\hat{H} + \frac{C}{12\pi ma} - \left(\frac{\partial p}{\partial E}\right)_n \hat{H} - \left(\frac{\partial$

bulk viscosity probes contact correlation (local pair fluctuations): $\zeta(\omega > 0) = \frac{1}{\omega} \int_0^\infty dt \, e^{i\omega t} \int d\mathbf{x} \, \langle \left[\frac{\hat{C}(\mathbf{x}, t)}{12\pi ma}, \frac{\hat{C}(0, 0)}{12\pi ma}\right] \rangle \sim \langle \left[\Delta^\dagger \Delta(\mathbf{x}, t), \Delta^\dagger \Delta(0, 0)\right] \rangle$

Enss PRL 2019; cf. Martinez & Schäfer PRA 2017, Fujii & Nishida PRA 2018

tion function cf. Fujii & Nishida PRA 2020 $(0,0)]\rangle$

$$\left(\frac{p}{n}\right)_E \hat{n}$$

3 function
$$\frac{\partial H_{\text{int}}}{\partial \ln |a|}$$

dynamical bulk viscosity (Luttinger-Ward theory)

transport peak (Drude form)

$$\zeta(\omega) = \frac{\chi \tau_{\zeta}}{1 + (\omega \tau_{\zeta})^2}$$

width $\tau^{-1} \simeq 0.6 k_B T/\hbar$: **T-linear scaling of scattering rate** independent of density!

contact tail $C/\omega^{3/2}$ at high frequency

Enss PRL 2019

10

quantum degenerate regime (Luttinger-Ward theory)

strong enhancement in quantum degenerate regime ($\zeta > \eta$)

Enss PRL 2019

larger than kinetic theory prediction for $T < T_F$

$$\frac{\zeta}{\eta} \simeq \left(\frac{P - 2E/3}{P}\right)^2 \simeq \left(\frac{C/a}{P}\right)^2$$

cf. Fujii & Nishida PRA 2018

attractor

drive scattering length => resonance

(fast, then slow)

$$\delta C(t) = \int_{-\infty}^{t} dt' \frac{\partial C(t)}{\partial a^{-1}(t')} \delta a^{-1}(t')$$

hydrodynamic perspective: effective field theory

- effective Hamiltonian
 - $\hat{H} = \hat{H}_{\text{reso}} + \frac{1}{4\pi ma(t)}$ a(t) acts as "external field" conjugate "magnetization" C
- dissipative bulk pressure $C(t) - C_{eq}(a(t))$ $-\zeta V_a$ $12\pi ma(t)$ with drive $V_a = \nabla \cdot v - d\frac{a}{a}$

 continuity equation $\partial_t \hat{H} + \partial_i \hat{Q}_i = \frac{C}{\Lambda \sigma \omega} \partial_t a^{-1}$

constitutive relation $\hat{p} = \frac{2}{3}\hat{H} + \frac{c}{12\pi ma}$

attractor solution

- Navier-Stokes: $\pi(t) = -\zeta V_a$
- from microscopic computation: $\tau \dot{\pi}$ -
- analytical solution $\pi(t) = \pi_{ini} e^{-(t - t_{ini})/\tau} + \pi_{att}(t),$ a
- long times $\tau/t \ll 1$: π_{ini} term nonperturb. (nonhydro mode)
- asympt. series $a_n \sim (n + 2\alpha)!$ (Borel resummation)

Fujii & Enss, 2404.12921

$$+\pi = -\zeta V_a \sim t^{-1-2\alpha}$$

ttractor
$$\pi_{att}(t) \simeq \chi e^{-t/\tau} \Gamma(-2\alpha, -t/\tau)$$

 $\pi_{att} \sim (\tau/t)^{1+2\alpha} [1 + (2\alpha + 1)\tau/t + ...]$ 2nd order

attractor solution

---1/

conclusions

- cold atom experiment can probe hydrodynamics beyond Navier-Stokes in real time
- probe isotropic expansion & local dissipation by external drive (no moving parts!)
- quantum transport theory $\tau^{-1} \sim T$ (density independent)
- dynamical response functions in real frequencies
- far-from-equilibrium response: Keldysh
- open PhD & postdoc position

arXiv:2404.12921

