SOLUTIONS TO EXERCISES TO GIOVANNI'S COURSE

(1) Let t,, be the Kohno-Drinfeld Lie algebra with generators t;; = ¢, 1 <1i <
7 < n and relations

[tij,ti] =0 for all distinct ¢, j, k, 1,
[tij, ti +tjx] =0 for all distinct ¢, j, k.

(1)

a) Show that r;;(z) = “L are solutions of the classical Yang—Baxter equa-
J z
tion

cyclyiplrij(zi — 25),mik(zi — 2x)] = 0 for all distinct 4, j, k (2)

(cycl is the sum over cyclic permutations) and [r;;(2), rp(w)] = 0 for
all distinct i, j, k, [.
(b) Deduce that for all z € C™ with z; # z; (i # j) the Gaudin Hamilto-

nians
Hi=) rijlzi— )
J:j#i
form a commutative Lie subalgebra of t,.
(¢) Show that the following are examples of representations of t, — gl(V).
(i) V=V1®---®V, a tensor product of representations of a Lie
algebra g with an invariant' non-degenerate symmetric bilinear

form
dimg

tij — Z eg)eg),
k=1

where z) =1® - ®1®2z®1®---®1 is the action on the ith
factor, for any orthonormal basis (ey) of g.
(ii) V a representation of gi,,

(iii) V = CS,, the group algebra of the symmetric group,
tij — (44),
the transposition of ¢ and j.
(2) Let R(z) € End(V ® V') be a meromorphic invertible solution of the Yang-
Baxter equation with transfer matrix 7,(z) = trg R (2 — 2,,) - RO (2 —
z1) € End(V®"). Assume that R(0) = P, the permutation v @ w — w @ v

(e.g. the normalized McGuire-Yang R-matrix R(z) = %). Show that
the commuting q-Gaudin Hamiltonians H; = 7,,(z;) can be written as

Hiy =R (z—z_1)-- ROV (z;—2)

X R(l’n) (zi—zn) . 'R(i’i+1)(2i—2i+1),

Li.e., such that {[a,b],c) = (a, [b,c])
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(3) Let V = C" be the vector representation of g = gl,,(C) (n > 2). Let V(2)
be the evaluation representation of the loop Lie algebra Lg = g ® C[t,t™}]
at z € CN0: (a® f(t)v = f(2)av, a € g, f(t) € C[t,t71], v € V. Show
that V(21) ® - - - ® V(z,,) is an irreducible representation of Lg if and only
if z; # z; for all 7 # j.

1. SOLUTIONS
1.1. Solution to l.a. Set z;; == z; — z; for 4,5 € {1,...,n}. Taking the cyclic
sum yields:
[Tij(zz‘j)ﬂ’ik(zikﬂ + [Tki(zki)7rkj(zkj)] + [Tjk(zjk)ﬂ“ji(zjiﬂ
_ [tij, tik) n [this ths) " [tk tji]

ZijZik ZkiZkj ZikZji
 zrgltags tik] 4 Zjilteis teg) + Zak(tie,
- b

Zij Zik 2k

using z;; + zj; = 0. Then using ¢;; — t;; = 0 (etc), and the bilinearity of the Lie
bracket, the numerator expands to

2i [tk ti] = [tris trsl) + 25 ([Eris trg] = [tag tin]) + 26 ([Eigs tin] — [t t5])
= 2i[tjk, tji + tha) + 2iltje, tyi + tri] + 2iltje, tjs + thil ,

and the three summands vanish by (1) (which also directly implies the vanishing
over distinct indices).

1.2. Solution to 1.b. By definition r;;: C* — t,, (with a simple pole at z = 0),
for i,j € {1,...,n}. Then z;; — 7;;(2;;) is the composition of z = (21,...,2,) —
zij = z; — z; with “r”, for z € C" out of the diagonals. The Lie bracket of such
t,-valued functions is induced from that of the target, hence all the evaluations
commute inside t,—for any choice of configuration of points on the complex affine
line.

Now for i,j € {1,...,n } with ¢ # k the Lie bracket expands as

[H;, Hj] = Z Z [riw (zin ), mja (250)] -
k: k#il: l#5

By 1.a nonvanishing term only arise if {¢,5,k,0} C {1,...,n } has three elements
(it cannot have less): this leaves a sum where either k =1, or k = j, or [ =4, i.e.

(Hi, H] =Y [Fim (Zim)s im (zim)] + Y [1i (zi) rin(zi0)] + Y [rin(zin), 75 (250)]

m l k
= Z([rik(zik),rjk(zjk)} + [rij (2i5), ik ()] + [Tik(zik)»rji(zji)]) :
k

and all addends vanish by (2).?

2To get the exact same formula use ri5(zij) +15i(z5:) = 0, and the skew-symmetry of the Lie
bracket.
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1.3. Solution to 1.c. In all cases we must show t;; = ¢;; and (1).

i) Actions on different slots commute, hence eg)e,(gj) = efcj)efj) for i # j: this
yields t;; = tj;. For the same reason [t;;,tr] = 0 if 4, j, k, [ are distinct.
Consider then the element ¢ = Zz;mlg exRer €gR Q.

Lemma 1.1. The element “t” is invariant for the g-action on gRg induced
from the adjoint action ad: g — gl(g).

Proof. Intrinsically t € g® g corresponds to Idg € g¥ @ g under the duality
(-] -)b : g — g” induced by the invariant nondegenerate symmetric bilin-
ear form (-|-): g® g — C. But the invariance of (-,-) implies (- | ~>b is
a morphism of g-modules, hence t is g-invariant since clearly the identity

is. (]
Remark 1.2. For a more concrete approach fix ¢ € {1,...,dimg} and
compute:

dim g

1 2
adei(t) = [65 ) + ez(’ )’ﬂ - Z [61"616] e +ep® [ei,ek] 5

k=1

then expand [e;, ex] = ;in;g clyep: finally use the invariance of the nonde-

generate symmetric bilinear form to show a relation among the coefficients
“cl, (which implies the sum vanishes).

Note by definition ¢;; = t() € End(V; ® --- ® V;,). Then fix distinct
indices 17, j, k and note that

dim dim
[t(ij)7t(z‘k)] _ Zg [t(ij)vez(i)ez(k)] _ Zg [t(ij)’el(i)}el(k)’
1=1 1=1

using again the commutativity of actions on disjoint slots, and analogously

dim g
ij j ij j k
[£69) $0P)] = Z [t(J),el(J)}el( )
1=1
Hence
dim g ] ] dim g B
[t(u)’t(zk) +t(]k)] _ Z [t(”),el(l) +el(y)]el(k) _ Z [t,ez](”)el(k) =0,
1=1 1=1
by Lem. 1.1.
ii) Clearly the anticommutator is symmetric in ¢,5 € {1,...,n }.

The commutation relations of gl,, are

[Eij, Exi| = 6;6Bi — 61 B ,



4 SOLUTIONS TO EXERCISES TO GIOVANNI'S COURSE

which immediately yields [t;;,tx] = 0 for 4, j, k, I distinct. Then expanding
the commutator leads to

[tijs ti] = [EijEji + EjiEij, ti]
= Eij[Eji, tu] + Eji[Eij, tua] + [Ejistia] Bij + [Eijo tia] By
= By (Ekl [Eji, Ei] + Ew [Eji, Exi] + [Ejis B Br + [Ejiy Bl Elk)
+ Ej (Ekl [Eij, Eik) + Ew | Eij, Ew] + [Eij» Bk Ert + [Eij,Ekz]Elk)
+ (Ekl [Eji, Eu] + Ei[Eji, Exi] + [Eji, B Ewi + [Eji, Ekl]Elk> By
+ (Ekl (B3, Bi] + B [Eij, Bxl] + [Esj, B By + [Eij,Ekl]Elk)Eﬂ
=FE;; (Elcl (6uEjk — 6 Eu) + Eu (6 Eji — 61Ewi) + (6uBjk — 6uFui) B + (dinEji — 5lel~ci)Elk)
+ Eji (Ekl (61Eik — 6inErj) + Eu (8,5 Ei — 6uErj) + (61 Eik — 6inErj) Ew + (8,5 Ea — 5“Ekj)Elk)
+ (Ekl (0B — ;5 E0) + Eue (0ix Byt — 651 Ewi) + (0 Esk — 030 51) Bxa + (01 Byt — 5leki)Elk)Eij
+ (Ekl (6,1Eik — 6ixErj) + Eu (8,5 Eit — 6uBrj) + (61 Eik — 6inErj) Ew + (8,1 B — 5ilEkj)Elk>Eji-
In particular if i = k (with 4, 7, distinct):
[tij, ti) = [Ei;Eji + EjiEij, BuEy + BBy
= Eij(EuEj + EqEy) — Eji(EaEyj + EijEua)
+ (EuEj + EjiEy)Eij — (EyEyj + EyEq)Eji s
while if k = j:3
[tij, tit] = [EijEji + EjiBij, BBy + By Ej
= — By (BB + EEy) + Eyi (Eq + Ey + EﬂElj)
— (EjiEi; + EyEj) Eij + (EiyEq + EuEyj) Eji

and their sum vanishes.
iii) Recall CS,, is the complex vector space generated by elements of S,,, and
Sy, acts on the generators by (left) multiplications.
Clearly transposing ¢ and j is the same as transposing j and i, and
transpositions of disjoint pairs commute.
Finally note that

(ij)(ik) = (ikj),  (ik)(ij) = (ijk),
while

(i) (k) = (igk),  (Gk)(i5) = (ikj),
whence

[(i9), (ik) + (3k)] = (ikj) — (ik) + (ijk) — (ikj) = 0.

31t’s smarter to just do these latest two computations of course.
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1.4. Solution to 2. Recall if T € End(Vy @ W) ~ End(V) ® End W then its trace
"over Vp“is trg(T) = (tr ® Id)(T") € End(W).
In particular for n = 1 we must the ¢-Gaudin Hamiltonian

H, = 7.1(21) = trg R(Ol)(O) = trg POy ¢ End(Vo ® V;) = End(V®2) 7

is the identity of V' (the empty product).
For this let (e;); be a basis of V, with dual basis (e});. Recall the trace of
T € End(V) is obtained by

tr T = ZeivT(ei) ,

i.e. composing evaluations and coevaluations. Analogously if v € V and T €
End(V ® V) by definition one has

trg T'(v) = Z(eiv ®@Id)T(e; ®v).

In particular for ' = P and v = e;:

tro Pej) = Z(eiv ®@Id)P(e; ®e;) = Z( ®Id)(e; ®e;) Zéljez =ej.

Now let us consider the general case n > 1. We have

Tn(z:) = tro R(O”)(zm) ... R(O’Hl)(ziJH)R(Oi) (O)R(O,ifl)(z“_l) . R(Ol)(zﬂ)
= trg R(O")(Zm) . "R(O’Hl)(%,iﬂ)Pmi)R(O’i_l)(Zi,iq) . "R(Ol)(zu)-

Let us first commute the flip P(°) of V; and V; to the left, past the R-matrices; for
this we should use the identities

PODO5) — i) p(0i) 709) p(0i) — p(0i)(id) (3)
valid for any T'= 3", T} ® T}/ € End(V ® V) ~ End(V) ® End(V). Indeed if i < j:
POTON (@01 @+ @vy) =Y PONTjvg @v1 @+ @ 0j_1 @ T}0; @ 0j41 @ -+ @ vy)
k

:ZW@Ul®"‘®'Ui—1®TIQUO®%‘+1®~~®vj_1®Ti”Uj®vj+1®-~®vn

:T(ij)(vi QU O QU1 @ U @ Vi1 ® - @ Uy) :T(ij)p(Oi)(v()@Ul @@ vy),

and analogously for the second identity.
Hence using (3)

Tn(zi) = tro POOYRE™ (z;) - RGHD () - RO (5 )  ROY(z;)
= trg P(Oi)R(O”'*l)(zi,i_ﬁ . R(Ol)(zﬂ) . R(m)(zm) e R(i>i+1)(zi7i+1)’

using that the action on different slots commute. Now we commute again P9 to
the right, using again (3):

Tn(zi) = trg R (25 1) - - ROY (2) POORO™ () - RGTFD (5,11
= RO (2 1) RO (251) - trg(POD) - ROM (25,) - - REHD (2 511)
= RO (2 1) - RO (2;) RO () - - ROV (2;.044),

using tro(ST) = Stro(T) € End(W) for endomorphisms S € End(W) and T €
End(Vo ® W), as well as the result from n = 1.
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1.5. Solution to 3. Here we consider the Lie-algebra evaluation morphism
ev,: Lg— g, a® f(t)— f(z)a, acg, feC[H.

Every g-module becomes an Lg-module via pullback along this morphism, with
Ker(ev.) acting trivially (and we have Lie-algebra isomorphisms Lg/ Ker(ev.) ~ g).

Hence V(z) = V as a vector space, and g C Lg taking constant functions: the
result follows for m = 1, since gv =V for v € V'\ (0).

Consider now the case m = 2 with z; = 29 = z. Then Lg acts on V(z) ® V(z)
with trivial action of the evaluation kernel @ ¢ = z: hence V(2) @ V(2) V@V
as g-modules, and we can show reducibility here. To this end recall the g-action
on V%2 commutes with the flip P: v @ w — w® v, i.e. P € Auty(V @ V): hence
P-invariant tensor yields a proper submodule. Now for generic m > 2 suppose
wlog. that z1 = 2o = 2z, and split

é V() =V()®20V(s)@ @ V(zm).
i=1

By the “m = 2” case this contains the proper submodule
(V(z)® V(z))P RV(23) @@V (2m).

Now get back to the case m = 2 with z; — 25 # 0 (as a warm-up). For k € Z
and a € g consider the element a;, = a ® t* € Lg; its action on pure tensors is

ap(v ® vg) = (zfa(l) + zéa@))vl ® vy, v1 € V(21),v2 € V(22). (4)
It follows that
@B _ ) _ o)
21 — 22

in the given representation, and analogously
BmA% 2 g,
22— 2

Consider now a nonzero vector v = >\, u; ® v; € V(21) ® V(22). This can
be turned into a pure tensor by the action, as follows. Choose a € g such that
u; — ug € Ker(a), then

T T
a® 1(v) = Z(aui) Qv =u® (vy +va) + Za(ui) ® v;,
i=1 1=3
with u = au; = ause, getting to a sum of pure tensors with fewer summands; we
conclude recursively.

Finally suppose v = u®uw is a nonzero pure tensor, with u € V(z1) and v € V(z2):
the action of g® 1+ 1® g C End(V(21) ® V(22)) moves this to any other pure
tensor, so in conclusion there are no nontrivial submodules.

The idea in the general case m > 2 is thus to express a(?) € End(V(z1) ®

-+ ® V(zm)) as a linear combination of ag,...,am—1 € Lg, for all a € g and
i€ {1,...,m}. For this we use
m
arp(vy @ - Q@ vyy) Zsza(l)(vl Q@ vennn ® Um) , v € V(z),
=1

4This defines symmetric tensors S2V C V ® V. Alternating tensors /\2 V CV®YV are defined
analogously (as the (-1)-eigenspace for P), and V@V ~ S2V @& A2 V.
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generalising (4).
Hence for v = v1 ® - - - ® vy, with v; € V(2;), we impose/compute:

Dy = Z CikQEV = Z cinzfaPv e V(z) @ @ Vi(zm),
k=1

k=1
i.e.
m
Zcikzlk =0;€C.
k=1
This means the matrix C' = (¢ )i (if it exists) is the inverse of the size-m Vander-
monde matrix V(z1,...,v,,) with parameters 21, ..., 2z, € C, i.e.
1z 22 . !
1 29 23 - 2t
Vizg,eovzm) =\ . . o . € gl,,(C).
1 zy 22, -0 2zt

But this matrix is invertible precisely because the parameters are all distinct.”

5The determinant is det (V(z1,...,2m)) = [hi<icj<m(zi — 25)-
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