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What are the challenges of classical computing?

Classical computational costs Classical computational limitations

Supercomputer usage for different fields (INCITE 2019)  No chemical potentials, 6-terms, real-time evolution, ...
— Lattice QCD: ~ 40% — Interior of neutron stars
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Classical computational costs

Supercomputer usage for different fields (INCITE 2019)
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Classical computational limitations
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Do we really need guantum computing?

Classical approaches to tackle the sign problem Why is(n’t) classical computing enough?

Tensor network states Example of tensor networks
Compute observables: (0) = (Y |0|y), approximate [¢)  Simulate chemical potential, 8-term, real-time dynamics !
= e.g. [Y) =2 i lin) - lin) = ZA}l o Ap ig) - i) — focus on 1+1D, first anséatze in 2+1D & 3+1D ?

person ®
% 0.40pF eole
—r Z%» > ] i °
7 e | e
g g = (.35 ] i °
I L] : ®
) o : o
— ® I ®
tensor quantum state ~ 0.30F .. i .. Nakayama, LF,
QN—> — [¥) o L_e| etal. (2022)
0
Other approaches Challenges
Complex Langevin, Lefschetz thimbles, ... Approximation inefficient for highly entangled states
— see other talks this week — real-time evolution: tensor size can grow exponentially

1 Byrnes et al. (2002), Pichler et al. (2016), Banuls et al. (2017), Schneider et al. (2021), ...
LF, et al. (2020), LF, et al. (2023), Angelides, LF, et al. (2023), ..., 2 Kuramashi et al. (2018), Felser et al. (2020), Magnifico et al. (2021), ... 6



Quantum computing: where do we stand?

Quantum hardware

Quantum algorithms

Achievements

Quantum advantage: outperformed classical computers ?
Exponential speedup of specific classical computations
Challenges

0(10 — 1000) qubits with V, < 22! - increase size

Noise — need guantum error mitigation / correction

"'r.‘ '
et 1
s

)

Arute et al. (2019) Zhong et al. (2020)

1 Morvan et al. (2024), earlier claims by e.g. Arute et al. (2019), Zhong et al.
(2020), Madsen et al. (2022) refuted by e.g. Liu et al. (2021), Oh et al. (2024)

Future applications

Cryptography, quantum chemistry, ...

Particle / nuclear / condensed matter physics, ...
Challenges

New technology — need fundamentally new algorithms
Competition — classical algorithms quickly advance

Bit Qubit
1 1) 1) =
v fl ) = ’
/,
> Superposition
0 |0) |0) = * + entanglement
/

Astibuag (2022) 7



How can we reduce the noise?

Error mitigation versus error correction

Problem

Error rates 0(0.1% — 1%) for gates and measurement
Near-term solution

Error mitigation: reduce errors, e.g., by post-processing
Long-term solution

Quantum error correction (QEC): fault-tolerant devices
Bit-flip code,! Shor code,? surface code,® GKP code,* ...
Quantum threshold theorem

For QEC, need extra qubits and errors below threshold °
E.g. surface code needs > 1000 extra qubits for p < 0.1%

1 Peres (1985), 2 Shor (1995), 2 Kitaev (1997), 4 Gottesmann et al. (2001), ...
5Shor (1996), Knill et al. (1998), Kitaev (2003), Aharonov et al. (2008)

Progress in quantum error correction

Many recent advances, including:

Quantum error correction below the surface code threshold

Google Quantum AI and Collaborators
(Dated: November 27, 2024)

Quantum error correction provides a path to reach practical quantum computing by com-
bining multiple physical qubits into a logical qubit, where the logical error rate is suppressed ex-
ponentially as more qubits are added. However, this exponential suppression only occurs if the
physical error rate is below a critical threshold. Here, we present two below-threshold surface code
memories on our newest generation of superconducting processors, Willow: a distance-7 code, and
a distance-5 code integrated with a real-time decoder. The logical error rate of our larger quantum
memory is suppressed by a factor of A = 2.14 4+ 0.02 when increasing the code distance by two,

Analogy: Curing (correcting) sickness (errors)
Current: less sick (less errors) after medication (“QEC”)
Future: cured (fault-tolerant) after medication (QEC)



How can we reduce the noise?

Example: measurement error mitigation Example: gate error mitigation
Operator rescaling method* Other mitigation techniques
Benchmark: Z and Z,Z, operators on IBM-Q hardware  Zero-noise extrapolation,? randomized compiling,3
y o A
Result: measurement error reduced by factor 10 quasi-probability decomposition,* ... (see other talks)
IBM-Q quantum hardware data Lattice field theory applications

© E.g. zero-noise extrapolation for lattice Schwinger model:
107 g © Oogi © o

unmitigated mean error 0.0 [

A
N AA% A A

standard deviation

-0.2f

—0.4}

L o~ :
-0.61 = o
\O/ : m (Yy) (ibmqx5)
B b _0.8! m (H) (ibmqx5)
N\ Figure credit: m extrapolated
- A, Graham Carlow T
: Klco et al. (2018
power-law decline of PY -1.258- : : - : : ( )
» N 0 1 2 3 4 5 6 7
- mitigated mean error A )
1072 - standard deviation \\A noise parameter r
b N
1 L |
1074 10° 10% 1 Kandala et al. (2017), Yeter-Aydeniz et al. (2019), LF et al. (2020), ...,

number of measurements LF et al. (2020) 2 Temme et al. (2017), Li et al. (2017), ..., * Temme et al. (2017), ... 9



Which quantum algorithms does one currently use?

Example: hybrid quantum-classical algorithms

Variational Quantum Eigensolver (VQE) !

Key concept
. main computation
Quantum computer: classically hard/intractable part

" Classical computer

% Optimization
_ \ % . Molecular
- " o spectra
a; M E(d)
Quantum computer Excited
Encode state

Prepare states

and measure JSGL Ground
S state

Sim et al. (2018)

1 Peruzzo et al. (2014);
2Nicoli, Anders, LF, et al. (2023), Anders, et int., LF, et al. (2024)

Goal

Find ground state of problem Hamiltonian

Variational approach
Minimize E(a) = (Y(a@)|H|P(a)) w.r.t. parameters a
Quantum computer

Given a; , prepare |y (a)) and measure E(a;)

Classical computer

Given E(a;), find optimized parameters &;, ,

— optimization using machine learning 2

(@) =

1 [ ] [

Compare to tensor network states:
state: quantum circuit < tensor network
parameters: gate < tensor parameters

71 [T s

10



Quantum Computing for High-Energy Physics
State of the Art and Challenges
Summary of the QC4HEP Working Group

Alberto Di Meglio,!* * Karl Jansen,??: T Ivano Tavernelli,* * Constantia Alexandrou,”? Srinivasan Arunachalam,’
Christian W. Bauer,” Kerstin Borras,®? Stefano Carrazza,'"! Arianna Crippa,? ! Vincent Croft,'?
Roland de Putter,® Andrea Delgado,'® Vedran Dunjko,'? Daniel J. Egger,* Elias Fernandez-Combarro,
Elina Fuchs,! 116 Lena Funcke,!” Daniel Gonzalez-Cuadra,!® ' Michele Grossi,! Jad C. Halimeh,?? 2!

Zoé Holmes,?? Stefan Kiihn,? Denis Lacroix,?® Randy Lewis,?* Donatella Lucchesi,?? 261

Miriam Lucio Martinez,?”-?® Federico Meloni,® Antonio Mezzacapo,® Simone Montangero,?®: 26

Voica Radescu,*” Enrique Rico Ortega,?!:32:33:3% Alessandro Roggero,*> 3¢ Julian Schuhmacher, Joao Seixas,
Pietro Silvi,?> 26 Panagiotis Spentzouris,*’ Francesco Tacchino,* Kristan Temme,® Koji Terashi,?’

Jordi Tura,'?4! Cenk Tiiysiiz,> !! Sofia Vallecorsa,! Uwe-Jens Wiese,*? Shinjae Yoo,*? and Jinglei Zhang??:4°

Lento Nagano,?’
37,38, 39

Quantum computers offer an intriguing path for a paradigmatic change of computing in the natural
sciences

high-energy physics community plays a pivotal role in
accessing the power of quantum computing
exploration of models that are very hard or even
impossible to address with classical techniques

11



Which field theories have already been simulated?

Experimental results on “public” QC

Experimental results on “private” QC

Superconducting qubits

Real-time evolution: Schwinger model,* SU(2),> SU(3),° ...

@

<
=)

> M Exact
@ 06/ WAthens |
c
w
g 0.4r
o
Q2 0.2r
w b VQE preparation of the baryon mass
0.0t . ‘ ‘ ‘ ‘ N
00 05 10 15 20 25 30 M N=4 42002200
. Time 20F
Ciavarella O Baryon mass (VQE)
et al. (2019) — Exact baryon mass
15F SU(2) “proton”

£10] ' EESN e S —

Variational computation: s}

1] ” —_—> '1
SU(2) “hadron” masses 4 SU(2) “quark” A
ok
0 1 > 3 + L

Trapped ions
Real-time evolution: Schwinger model, °...

Cold atoms
Real-time evolution: Schwinger model,® Bose-Hubbard,” ...

Superconducting qubits
Hadron dynamics: Schwinger model with > 100 qubits,2 ...

14 1.5
12
10 10 _

05

0.0
0 12 24 36 18 63 75 87 99 111
Fermion staggered site j

1Kico et al. (2018), de Jong et al. (2021), ...,2KIco et al. (2019), ..., 2 Ciavarella et al. (2019), ..., 4 Atas et al. (2021), ...,
5Martinez et al. (2016), Nguyen et al. (2021), ..., ¢ Yang et al. (2020), Mil et al. (2020), ..., ’ Bloch et al. (2012), ..., 8 Farrell et al. (2024), ... 12



How to address the sign problem in 1+1D and 2+1D?

Sign-problem-afflicted regimes Lattice fermions
Topological terms Staggered fermions
1+1D Abelian gauge theories with §-term ! “Hamiltonian community” focuses on staggered fermions
2+1D U(1) gauge theory with Chern-Simons term 2 — however, no rooting trick - need Wilson fermions...?
Chemical potentials Wilson fermions
1+1D U(1) gauge theory with chemical potentials v, 3 1+1D implementation ° ——> $ i g
i 4
=y = — extension to 2+1D o ol ? i
| — relevant for hybrid E ol i
s L B ] : MCMC-quantum g 4; i
<] : A TA A A H 6
i computations 0.02r i
—1 ‘?"‘: 1 1 0.01r i Mass perturbation theory
—20 0 20 K Data incorporating mass shift
= 0.00r (D Datanot incorporating mass shift
_ _ _ 000 002 004 006 008 010
— extension to 2+1D: 4 see talk by Emil Rosanowski v

1 Angelides et al. (2023), Crane, et int., LF, et al. (2024); ... 2 Peng, Diamantini, LF, et al., (2024); 3 Schuster, Kihn, LF, et al. (2023); 4 ongoing
work with Rosanowski et al.; ®> Angelides, LF, et al. (2023); ® Crippa, Romiti, LF, et al. (2024); Avkhadiev, LF, et al. (2024); ... 13



Outlook: how to address the sign problem in 3+1D?

Example: U(1) lattice gauge theory with 8-term First classical results for a single cube

Goal 1
Study phase transition at 8 = m and large g = f~/2 05
Theoretical requirements 0.6
Derive 3+1D 6-term in Hamiltonian lattice formulation ! o 0'4
Develop Hamiltonian algorithms for 1+1D,2 2+1D,3 3+1D ‘;5 0'2

&) .
First classical computations o 0

Q
Study phase transition with exact diagonalization ! =—% 2 0.9

S .
Future work S 4
Larger volumes: tensor network & quantum computations 06

—0.8 | . . . .

1Kan, LF, Kihn, Zhang, Haase, Muschik, Jansen (2021) —1 i i i i i
2 Many papers by various groups...; Schuster, Kuihn, LF, et al. (2023); ... —0.6 —04 —-0.2 0 0.2 0.4 0.6
3 Crippa, Romiti, LF, et al. (2024); Crane, et int., LF, et al. (2024); ... )
Reviews: LF, et al., (2023); ... 6/8m

14



Summary: where do we stand, where will we go?

A rough sketch...

The path to go...

State of the art

First quantum simulations of 1+1D & 2+1D lattice theories

Noise mitigation, circuit optimization, new algorithms 1013 -

Future goals 1011 -

IBM road map extrapolation
# qubits doubles every year
Global Risk Institute survey
20M qubit RSA-2048 target

Quantum simulations for 2+1D & 3+1D theories o
To evade sign problem, ... of Lattice QCD and beyond g
RS

Analogous to 105 -

Lattice QCD from t
1980s to 2020s? ——

CAUTION

AREA UNDER
CONSTRUCTION

2020

2030 2040 2050 2060

Year Adapted from
Groenland (2024)

15



Thanks to my collaborators and my group

74t 7a h
Stefan Kihn Carsten Urbach Christine Muschik
(DESY) (DESY) (Bonn U.) (Waterloo U.)

Arianna Crippa Simone Romiti Di Luo Eleanor Crane : : :
(DESY) (Bern U.) (UCLA) (MIT) Thanks to you for listening! Questions?
and more...

16



Backup: examples of quantum advantage

Classical simulations of circuit!/boson 2 sampling Benchmark of random circuit sampling 3
(‘:Iusmg. the "Quantum Supremacy F-ap.: Ach.levmg Real-Time . 108%] o Google (Sycamore) ® :
Simulation of a Random Quantum Circuit Using a New Sunway ) _ : ;
S t = ® Google (Willow) :
upercomputer Q 10 Other superconducting (ZC2) :
a new milestone for classical simulation of quantum circuits; and reduces the simulation sampling = § . A
time of Google Sycamore to 304 seconds, from the previously claimed 10,000 years. o) @ Other ions (Quantinuum)
S 107 A
. . - - - m .
Classical algorithm for simulating experimental e
Gaussian boson sampling 3 107 1
modest computational resources. We exhibit evidence that our classical sampler can TU ]
simulate the ideal distribution better than the experiment can, which calls into question the 3 101 g
claims of experimental quantum advantage. © .
o 102 A
= 1071 A
Quantum-classical race -y
. . . o a
Algorithms and hardware quickly advance on both sides > L] : : : :
2020 2021 2022 2023 2024 2025

For exponentially hard problems Year

Small quantum step < giant classical leap

Computational costs are heavily influenced by available memory. Our estimates therefore consider a range of

scenarios, from an ideal situation with unlimited memory (A) to a more practical, embarrassingly parallelizable

1Liu et al. (2021), 2 Oh et al. (2024), 3Neven (2024) implementation on GPUs (@). 17



Backup: do we really need quantum computing?

Example: 1+1D Bose-Hubbard model Why is(n’t) classical computing enough?

Hamiltonian Challenges
_ s U_ s . o |
H = z —J (aj jy1 + h. C-) T (7 — 1) No efficient parametrization of highly entangled states
! In real-time evolution, tensor size can grow exponentially
U 0.020
é ? — Classical
0.015 4 = Analogue
o S 5 Fault-tolerant digital
5
Real-time simulation 1 S 0.010-
=
Analog quantum simulator: ultracold atoms £
Classical benchmark: tensor networks (MPS) 0.0051
Experimental results - -
“the controlled [quantum] dynamics runs for longer times 0.5 1.0 15 2.0 25 3.0
than present classical algorithms can keep track of” ! Time, t (J ™)

L Trotzky et al. (2012) Daley et al. (2022) 18



Backup: dealing with gauge fields

Infinite Hilbert space

Problem

Continuous gauge theory requires co-dim. Hilbert space
First approach

Integrate out gauge field: only possible in 1+1D
Second approach

Approximate gauge group:te.g. U(1) = Z,

—

Third approach
Truncate irreps:? e.g. for F;|l) = |I), use finite |I| < L

Many more approaches...

Gauge invariance

Problem

Gauge invariance requires imposing local constraints
First approach

Penalize unphysical states,® €.9. Hpenaiy = A(X)=1 Qj)2
Second approach

Analytically solve Gaul3 law at every site

Third approach

Gauge-invariant formulation, e.g. loop-string-hadron °
Many more approaches...

1Zohar et al. (2013), ..., 2Horn (1981), ..., 3 Banerjee et al. (2012), ...,
4Klco et al. (2018), ..., > Raychowdhury, Stryker (2020)

19



Backup: measuring the energy on a quantum computer

Example: massless Schwinger model Mapping the model to qubits
Original Hamlltonlan Dimensionless spin Hamiltonian * ,
[
}[__%Z((pn on ¢n+1_hc +_ZF2 —x2(0n0n+1+0n0n+1)+22{2( 1)k+alf]}
n=0 n=0 k
with 6, = —aqAy, gF, = En, [0y, Liy] = i8ym, 6, € [0,271] from mapping d)n Pn+1 = Op Opyq @nd d)n bn — g(o'rf +1)
Eliminate 6,, Quantum computer
. _ i X
¢Ielen¢n+1 . ¢J¢n+1 from gauge transformation: Measurement of (y|0|y) with 0 € {I, g7}®V

| H = ¥, h U0 Uy with U0, Uy, € {1, 6%, 07, 0?}®N
b~ (b e ™), and pF — o (ITizd eion-v)

Eliminate F,,
E, = Yk Qx from solving Gaul3 law (for OBC):

|0) Standard Z Measurement

A= - - - -

J Measure |0> probability

1 ' ! |
E, — F_q = Q, Vn, where Q,, = le_ b, — > [1—(—1)"] Ay Reac!out ‘ )
> % ~ Measure |1> probability

1 Bank . (1976), H . (1997
anks et al. (1976), Hamer et al. (1997) Gokhale et al. (2020) 20



Backup: how can we mitigate the quantum errors?

Example: measurement error mitigation Operator rescaling method !
Goal
0) q U(ay) — 1 U(ax —
(@) = 10) (@1) (23) mitigate bit-flip errors during readout: 0 Ptor1 250
Method
10) =1 U(az) U(as) o _
replace operators by noisy operators: (1/}|0|1/J) — (1/)|0|1,b)
Readout Bit Flips Probability Noisy Operator
~ 1 O
correct 0-0,1-1 (1-p)A—-p1) O0=2Z= (0 _1) X Total noisy operator: O
iIncorrect ~ . -1 0 = (1 — pO)(l — pl)Z + p0p1(_Z)
.. for both outcomes 0~ 1170 PoP1 O=-2= ( 0 1) +po(1 —p) (=) + (1 — po)ps
~ (-1 0
.. for outcome 0 0-1L1-1 " po(1=p1) O=1= ( 0 _1) Rescaled (zero-noise) operator:
j=i=(L O __ 1 5 _ _PimPo
... for outcome 1 0-01-0 (1 —po)p1 0O=1I= (0 1) P -Z rE—— 0 1—290—191]1

1 Single Z operator: Kandala et al. (2017), strings of Z operators: Yeter-Aydeniz et al. (2019),
generalizations: LF, Hartung, Jansen, Kuhn, Stornati, Wang (2020), (2021); Alexandrou, LF, et al. (2021a), (2021b) 21



Backup: guantum volume

Concept Timeline

Motivation Last three years
Number of noisy qubits: no good performance measure Early 2020: V, = 32 (IBM) ford =5,n =5
New performance measure Early 2021: V, = 512 (Honeywell) ford =9,n =9
Measure capabilities and error rates of quantum device Early 2022: V,, = 4096 (Quantinuum) for d = 12, n = 12
IBM’s definition

log, V, = argmax{min[n, d(n)]}

n<N

Example

Successfully run circuit of depth d = 8 on n = 8 qubits:
quantum volume is V,, = 2°% = 256 — size of state space

o
-
(=]
=
[
g
n
o
=
a2

“Success”

Most likely outputs of the circuit are computed correctly ’
67% of the time with a 20 confidence interval el

“Tokyo ”

“ Tenerife ”

Chow,
Gambetta (2020)

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030




Backup: TRG results for free energy of CP(1) model

3 ~0.85F s ) s
5040—(1) .oio. - (b) .o:o. 5_3.35_( ) o.i.o
= 0.35 o. i .o ;ﬂ‘r —0.90F o. : .o :ﬁ .. : .o
1 ! . -. i .o ! o. i .o | 3408 o. i .o
i F(ﬁ, 0) - —B—VlogZQ fO.SO—.o. E .o. 5—0_95—..0 E .o. Ehzis.%_.o. E .o.
4 . 50 T . 30 75 . A 35
+ V=2%,D=80,8=01,0611 9 9 - 9
= -(alllllplll- 574(})l)lll:llll. ES {Cz...in..
= 1071 | < 10 i _ . ; m
I I ) 1078 o | e,
201k : 21070 | 2 , ® |
L<IT~ * Blue:D =112, k.« = 2, xg = 2 (truncate CE) ST shei |5 SR WIIUE BT § | y
10-17—1 —L 10~ —1 —1 ' —L
g o Orange: D =112, kmax =3, Yo = v 3.0 ) 3.2 3.0 ) 3.2 3.0 ) 3.2
= 11110 1 —8.51x10° 8%
mh » Green:D =112, kpax = 2, xg = 4 L O00THa) - ®) w | w < oo Ty
%0.00065 . . 7—0.0002- . -] :ﬂ—o_ooozu n . ’ Lo
= ° * 0 n . o @ * o Nt ° ! ® e
M ° Blue: V =212 Orange: V = 2% Green: V =22% o e 7 "« commgesr et o b 5 .
GE) 92F(B.0) D000 70010 50005 _0.0:)10 000035 —tee ophm
=f * Susceptibility: (8,0) = -f—>—atf0 =m o 43141 6 +3.141 6 +3.141
S 00 (a) o sk () . 0P .
d - Xpeak & VY with y = 1 for first-order transition gﬁ' e Lot N T -
Far . o ¢ & T ot
oy = 1.00214 = 0.0005 | e ® = 0.99936 -+ 0.00069 ar T ~ = 0.98103 = 0.0836
3 10 G g R s 10 15
log, V' log, V' log, V/
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Continuum

Backup: MPS extrapolation procedure

Extrapolation: to infinite bond dimension, 1/D — 0

Errors: §0 = \/(|0Dmax — Opewl/2)” + (\/ﬁODmax)z’ where n = 10~1°

Extrapolation: to infinite-volume limit, 1/N — 0

Errors: from fitting coefficient and from comparing to next-order polynomial

Extrapolation: to the continuum, ag — 0
Errors: from fitting coefficient and from comparing to next-order polynomial
Total error: around 1% for UV-finite chiral condensate AC

0.000 F==
e (C) —6
] 9 %10
=)
(T —0.005F
A Ip—————i
D |
—0.010F =27
0.00 0.02 0.01
1/D
—0.2F
(}M
o e,
—0.3F ™
|
0.00 0.01
1/N
0.0700 _((f)\\\
O
<1 0.0675}F
LN
0.0650k ! e
0.00 0.05 0.10

Plots: x = 160, m/g = 0.07, N = 354, § = 0.2
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Backup: why are topological terms in 2+1D interesting?

3+1D: Topological 8-Term 2+1D: Topological Chern-Simons Term
Relevance Relevance
Strong CP problem, Grand Unified Theories, ... Quantum Hall effect, fermion/boson dualities, ...
Parameter Parameter 1
Continuous angle 8 € [0,2m) Quantized Chern-Simons coupling k € Z, called “level”
Degeneracy Degeneracy 2
Ground state has no 6-dependent degeneracy Ground state has k-fold degeneracy on a torus
Mass generation Mass generation 3
No mass from 8-term, only from QCD and Higgs Photon mass from Chern-Simons term: m, = ke?/2n

— “Maxwell-Chern-Simons (MCS) theory”

1 Pisarski (1986)
2 Eliezer, Semenoff (1992)
3 Deser, Jackiw, Templeton (1982)

25



Backup: how to formulate MCS theory on the lattice?

Problem State-of-the-Art

Continuum: 2+1D Chern-Simons term Lattice formulation of non-compact MCS Hamiltonian 2
However, non-compact gauge field - no simulations
1k

v 3. VP
Scs(A) = Am d xe™P A0, 4, Lattice formulation of compact CS Hamiltonian 2
Villain approach, monopoles eliminated — gauge invariant
Naive lattice discretization: However, non-commuting geometry — no simulations
ik 5 Our goal: Derive compact MCS lattice Hamiltonian
Scs(A) = 30 dr Z P Az AvAyzip, Paves the way for simulations on (quantum) computers
/Iy

T Esites

Problem: compact gauge fields - monopoles
— Chern-Simons term violates gauge invariance! !

1 Pisarski (1986), Affleck et al. (1989) 2 Luscher (1989), ...
3 Jacobson, Sulejmanpasic (2024)

26



Backup: compact MCS Lattice Hamiltonian

2+1D Maxwell Lattice Hamiltonian + Extension Compact Gauge Fields

Magnetic field term: similar to QED (without monopoles) Gauge configurations: can take values in (—oo, +0)

Electric field term: modified by Chern-Simons term Compactness: ensured by constraints on Hilbert space
_ SR .
2 I A 2 2 !
. e D1 ka . X ka |
H=— — [ — + + [ — .
plaquettes N @y N —_— il
2
€ A
1 X A o X X
T 262 Z —As Ao Commutation relations: Az, Py] = 04,
plaquettes ’
\& Ay //

Quadratic Hamiltonian: can be solved analytically!
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Backup: exact Solution of Lattice Hamiltonian

Pure Maxwell Theory Maxwell-Chern-Simons Theory

No gap: Linear dispersion relation of gapless photon Gap: Chern-Simons term gives mass to photon

1
Plot of dispersion relation: AFE =w = \/(—2 12(1 — cosqy) + 2(1 — cos qg)j_
a
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Backup: can we reproduce all topological properties?

Photon Mass & Quantized Coupling Ground-State Degeneracy
Continuum limit of dispersion relation Degeneracy for torus
Correctly reproduces photon mass in continuum: * Torus: periodic boundary conditions — non-trivial topology
2
N ke
w? — |q]° + "
2m

Quantization of Chern-Simons level
Constraint from large gauge transformations:

p2mily 2mily _ p2milo 2mily
Correctly reproduce k-fold degeneracy of ground state 3
Correctly reproduces quantization property: 2 — good cross-check / benchmark for numerical methods!
W — 1 p— k 6 Z 1 Deser, Jackiw, Templeton (1982)
2 Pisarski (1986)

3 Eliezer, Semenoff (1992)
Image credit: https://commons.wikimedia.org/w/index.php?curid=32176358
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Backup: Monopole Problem of Compact MCS Theory

Compact Maxwell Theory Conventional Villain Approach
Existence of quantized magnetic fluxes: Add discrete plaguette variables n, encode magnetic flux
Interpret n as discrete gauge fields for shift symmetry:

dA € 2nZ 27 27

AQ—>AQ—|——, AZ—>A1—|——, 221,2
» dr a
If closed surface is contractible, monopole inside Gauge the discrete shifts = study compact gauge theory:
Compact MCS Theory U(l) — R/Qﬂ'z
Monopole configuration: large gauge transformation
— changes Chern-Simons action — boundary terms at Modified Villain Approach

spatial infinity — action violates gauge invariance Eliminate monopoles with Lagrange multiplier



Backup: 2+1D QED With(out) Monopoles

Lagrangian Formalism Hamiltonian Formalism

Compact variables 2+1D Compact QED ...
For compact 6;, action contains terms cos(>_. ¢;6;)

... including monopoles / instantons
Conventional Villain approach

Replace cosine terms by periodic Gaussian potential: e2 1
_ 2 _ 2
o ) H = 52 ZEz + 22 Z (1 cos a B)
6,8 cos(6) ~ § : e—%(Q—I—QWn)Q links plaquettes
n==—0c ... with monopoles / instantons removed

— discrete gauge fields n can take values in (—oo, +0) 2 , a2 ,
— compactness ensured by constraints on Hilbert space H = 572 Z Er 4+ 502 Z B

. o links plaquettes
Modified Villain approach

Eliminate monopoles with Lagrange multiplier — flat n
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Backup: Constraints on Hilbert Space

Local Gauge Transformations Large Gauge Transformations
Gauss’ law Two additional constraints
Constraints on physical states in Hilbert space: )
L\ A A A 2miln — it 27i L i0
iANG _ € ) = ey,  e2mile = e
e*Cly) =|¢), VAER, [H,G]=0 ) )

— compactify gauge field configurations
— similar as for QED (without monopoles)
Generator for local gauge transformations
Similar as for QED, but modified by Chern-Simons term:  Generators for large gauge transformations
Similar as for QED, but modified by Chern-Simons term

/ —1‘11 \ — enforce quantized Chern-Simons coupling
/ A \ . E\ .
| P2 2\ —As Ao
2 —P1 ka
ST N (T B
— P2 P1 . i Ay
b U | 4

(&3]
N)



Backup: Compactification Through Constraints

Large Gauge Transformations

Invariance of Partition Function

Constraints on Hilbert space ...

v) = ¢ y)

ezwaﬁi

... allow only certain gauge field configurations

ﬁWQZ(%+mﬂW%m@GZi=

Different topological sectors of theory
Transformation |1¢) — e>™Lia))
... changes sector m; — m; + k €;;

... due to non-zero commutator | L1, La] = —

1,2

k
—1
27

Partition function
Sum over all sectors / values of m; with equal weights
— stays invariant under large gauge transformations

Similarity to Villain approximation:

00 N

_B 2

6Bcos(é’) ~ Z e 5 (0+27n)
n=-—o00

— obtain periodic function (i.e., compact gauge field) by
summing over multiple non-periodic functions

Numerical simulation
Truncation of infinite sum, neglect terms with large n



Backup: Large Gauge Transformation Constraint #1

2+1D Compact QED ... ... With Chern-Simons Term
Constraint on Hilbert space Modified generator for large gauge transformation
2milq _i6y X
mihiy) = e i) ke,
[P el
Generator for large gauge transformation T T T L
P2
a

1 1x | ka
Iy T T TapQ — Z ) <ap($1$z)2_§‘4($1$2+1)>

N11

— = E :p.f[?l,NQ 1
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Backup: Large Gauge Transformation Constraint #2

2+1D Compact QED ... ... With Chern-Simons Term
Constraint on Hilbert space Modified generator for large gauge transformation
2 Lo __ b2
e ) = e |y
Generator for large gauge transformation éfﬁ
. _)_
LQ — J\.i_f[: 2
b —
— | Ny—1
D Y e —
—_— x2=0 :
1. ka -
—_— = Z (Ep(“’”);l + 4_A($1+1,:1?2);2)

r2e€{0,1,....No—1}



Backup: Compatibility of Constraints

Commutators Quantization of Chern-Simons Level
Constraints need to commute with Hamiltonian Non-zero commutator yields quantization condition!
[ f{ é] —0 Constraint from large gauge transformations:
7 T ~ A A A

A A . 2mil 2milo _ 2miLlo 2milq
H,Li] =0, i=12 AN
Constraints need to commute with Gauss’ law Correctly reproduces quantization property: *
A 2mikl
[G,LZ]:O, 22172 ._1 — keZ
But: constraints do not commute with each other!

A A k

Ly, Lol = ——1

(L1, Lo 27

1 Pisarski (1986)

&
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Backup: Plaquette Visualization of Lattice Hamiltonian

Compact MCS Hamiltonian

Magnetic field term: similar to QED (without monopoles)
Electric field term: modified by Chern-Simons term

T R )

J:E:nlteb

&2 |(EDREIR) - ( EE)

2
(-4 )
1 - .
T 2¢2 Z — 42 Az Plaquette operator:
plaquettes ~ ~ ~ ~ ~
\k Al /} DAQU;LQ = A$31 T A33—|—i;2 o A.:c+§;1 IR ACU;Q




