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Supercomputer usage for different fields (INCITE 2019) 

→ Lattice QCD: ∼ 𝟒𝟎%

No chemical potentials, 𝜃-terms, real-time evolution, …

→ interior of neutron stars

What are the challenges of classical computing?

Classical computational limitationsClassical computational costs

Figure credit: 

Jack Wells, Kate Clark  

Figure credit: 

BNL/RHIC, CfA
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Example of tensor networks

Simulate chemical potential, 𝜃-term, real-time dynamics 1

→ focus on 1+1D, first ansätze in 2+1D & 3+1D 2

Challenges

Approximation inefficient for highly entangled states

→ real-time evolution: tensor size can grow exponentially

Tensor network states

Compute observables: 𝑂 = ⟨𝜓|𝑂|𝜓⟩, approximate 𝜓

→ e.g. 𝜓 = σ𝑐𝑖1⋯𝑖𝑛 𝑖1 ⋅⋅⋅ 𝑖𝑛 ≈ σ𝐴𝑖1
1 ⋯𝐴𝑖𝑛

𝑛 𝑖1 ⋅⋅⋅ 𝑖𝑛

Other approaches

Complex Langevin, Lefschetz thimbles, ... 

→ see other talks this week

cc

Orus (2014)

Do we really need quantum computing?

Why is(n’t) classical computing enough?Classical approaches to tackle the sign problem

1 Byrnes et al. (2002), Pichler et al. (2016), Banuls et al. (2017), Schneider et al. (2021), …

LF, et al. (2020), LF, et al. (2023), Angelides, LF, et al. (2023), …, 2 Kuramashi et al. (2018), Felser et al. (2020), Magnifico et al. (2021), ...

Nakayama, LF, 

et al. (2022)
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Future applications

Cryptography, quantum chemistry, …

Particle / nuclear / condensed matter physics, …

Challenges

New technology → need fundamentally new algorithms

Competition → classical algorithms quickly advance

1 =

Quantum computing: where do we stand?
A

p
p

lic
a
ti
o
n

s
C

h
a
lle

n
g
e
s

Arute et al. (2019) Zhong et al. (2020)

Achievements

Quantum advantage: outperformed classical computers 1

Exponential speedup of specific classical computations

Challenges

𝒪(10 − 1000) qubits with 𝑉𝑄 ≤ 221 → increase size

Noise → need quantum error mitigation / correction

0 =

𝜓 =

Quantum algorithmsQuantum hardware

1 Morvan et al. (2024), earlier claims by e.g. Arute et al. (2019), Zhong et al. 

(2020), Madsen et al. (2022) refuted by e.g. Liu et al. (2021), Oh et al. (2024) Astibuag (2022)

Superposition

+ entanglement
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Problem

Error rates 𝒪 0.1% − 1% for gates and measurement

Near-term solution

Error mitigation: reduce errors, e.g., by post-processing

Long-term solution

Quantum error correction (QEC): fault-tolerant devices

Bit-flip code,1 Shor code,2 surface code,3 GKP code,4 … 

Quantum threshold theorem

For QEC, need extra qubits and errors below threshold 5 

E.g. surface code needs > 1000 extra qubits for 𝑝 < 0.1%

How can we reduce the noise?

Progress in quantum error correctionError mitigation versus error correction

1 Peres (1985), 2 Shor (1995), 3 Kitaev (1997), 4 Gottesmann et al. (2001), ...
5 Shor (1996), Knill et al. (1998), Kitaev (2003), Aharonov et al. (2008)

Many recent advances, including:

…

Analogy: Curing (correcting) sickness (errors)

Current: less sick (less errors) after medication (“QEC”)

Future: cured (fault-tolerant) after medication (QEC)
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Other mitigation techniques

Zero-noise extrapolation,2 randomized compiling,3

quasi-probability decomposition,4 … (see other talks)

Lattice field theory applications

E.g. zero-noise extrapolation for lattice Schwinger model:

unmitigated mean error

standard deviation

power-law decline of

- mitigated mean error

- standard deviation

number of measurements

1 Kandala et al. (2017), Yeter-Aydeniz et al. (2019), LF et al. (2020), ..., 
2 Temme et al. (2017), Li et al. (2017), ..., 4 Temme et al. (2017), ...

Operator rescaling method1

Benchmark: 𝑍 and 𝑍1𝑍2 operators on IBM-Q hardware 

Result: measurement error reduced by factor 10

How can we reduce the noise?

Example: gate error mitigationExample: measurement error mitigation

IBM-Q quantum hardware data 

Klco et al. (2018)

LF et al. (2020) 

Figure credit: 

Graham Carlow
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Key concept

Classical computer: main computation

Quantum computer: classically hard/intractable part

1 Peruzzo et al. (2014); 
2 Nicoli, Anders, LF, et al. (2023), Anders, et int., LF, et al. (2024) 

Goal

Find ground state of problem Hamiltonian ℋ

Variational approach

Minimize 𝐸( Ԧ𝛼) = ⟨𝜓( Ԧ𝛼) ℋ 𝜓( Ԧ𝛼)⟩ w.r.t. parameters Ԧ𝛼

Quantum computer

Given Ԧ𝛼𝑖 , prepare |𝜓( Ԧ𝛼)⟩ and measure 𝐸 Ԧ𝛼𝑖

Classical computer

Given 𝐸( Ԧ𝛼𝑖), find optimized parameters Ԧ𝛼𝑖+1

→ optimization using machine learning 2

Which quantum algorithms does one currently use?

Variational Quantum Eigensolver (VQE) 1Example: hybrid quantum-classical algorithms

𝐸( Ԧ𝛼𝑖)Ԧ𝛼𝑖

Sim et al. (2018)

|0⟩

|0⟩

𝑈(𝛼1) 𝑈(𝛼3)

𝑈(𝛼2) 𝑈(𝛼4)

𝜓 Ԧ𝛼 =
Compare to tensor network states: 

state: quantum circuit ↔ tensor network

parameters: gate ↔ tensor parameters
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Superconducting qubits

Real-time evolution: Schwinger model,1 SU(2),2 SU(3),3 ...

Variational computation:
SU(2) “hadron” masses 4

Trapped ions 

Real-time evolution: Schwinger model, 5…

Cold atoms

Real-time evolution: Schwinger model,6 Bose-Hubbard,7 ...

Superconducting qubits 

Hadron dynamics: Schwinger model with > 100 qubits,8 …

1 Klco et al. (2018), de Jong et al. (2021), …, 2 Klco et al. (2019), …, 3 Ciavarella et al. (2019), …, 4 Atas et al. (2021), …, 
5 Martinez et al. (2016), Nguyen et al. (2021), …, 6 Yang et al. (2020), Mil et al. (2020), ..., 7 Bloch et al. (2012), …, 8 Farrell et al. (2024), …

Which field theories have already been simulated?

Experimental results on “private” QCExperimental results on “public” QC

Ciavarella

et al. (2019)
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Topological terms

1+1D Abelian gauge theories with 𝜃-term 1

2+1D U(1) gauge theory with Chern-Simons term 2

Chemical potentials

1+1D U(1) gauge theory with chemical potentials 𝜈𝑓
3

→ extension to 2+1D: 4 see talk by Emil Rosanowski

1 Angelides et al. (2023), Crane, et int., LF, et al. (2024); … 2 Peng, Diamantini, LF, et al., (2024); 3 Schuster, Kühn, LF, et al. (2023); 4 ongoing

work with Rosanowski et al.; 5 Angelides, LF, et al. (2023); 6 Crippa, Romiti, LF, et al. (2024); Avkhadiev, LF, et al. (2024); …

How to address the sign problem in 1+1D and 2+1D?

Lattice fermionsSign-problem-afflicted regimes

Staggered fermions

“Hamiltonian community” focuses on staggered fermions

→ however, no rooting trick → need Wilson fermions…?

Wilson fermions

1+1D implementation 5

→ extension to 2+1D 4

→ relevant for hybrid 
MCMC-quantum 
computations 6
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Study phase transition at 𝜃 = 𝜋 and large 𝑔 = 𝛽−1/2

Theoretical requirements

Derive 3+1D 𝜃-term in Hamiltonian lattice formulation 1 

Develop Hamiltonian algorithms for 1+1D,2 2+1D,3 3+1D

First classical computations

Study phase transition with exact diagonalization 1

Future work

Larger volumes: tensor network & quantum computations

𝜃/8𝜋2
T

o
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Outlook: how to address the sign problem in 3+1D?

First classical results for a single cubeExample: U(1) lattice gauge theory with 𝜽-term

1 Kan, LF, Kühn, Zhang, Haase, Muschik, Jansen (2021)
2 Many papers by various groups…; Schuster, Kühn, LF, et al. (2023); …
3 Crippa, Romiti, LF, et al. (2024); Crane, et int., LF, et al. (2024); …

Reviews: LF, et al., (2023); …
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Summary: where do we stand, where will we go?
P

re
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e
n
t

N
e
a
r 

fu
tu

re

A rough sketch…The path to go…

State of the art

First quantum simulations of 1+1D & 2+1D lattice theories

Noise mitigation, circuit optimization, new algorithms

Future goals

Quantum simulations for 2+1D & 3+1D theories

To evade sign problem, … of Lattice QCD and beyond

Analogous to 

Lattice QCD from 

1980s to 2020s?

Adapted from

Groenland (2024)
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Thanks to my collaborators and my group

Karl Jansen            Stefan Kühn          Carsten Urbach      Christine Muschik

(DESY)                   (DESY)                   (Bonn U.)              (Waterloo U.)

Thanks to you for listening! Questions? 
Arianna Crippa Simone Romiti Di Luo               Eleanor Crane

(DESY)                  (Bern U.)                    (UCLA)                     (MIT)

and more…
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Classical simulations of circuit 1 / boson 2 sampling

Quantum-classical race

Algorithms and hardware quickly advance on both sides

For exponentially hard problems

Small quantum step ↔ giant classical leap

Backup: examples of quantum advantage

Current status of quantum advantageEarly claims of quantum advantage

1 Liu et al. (2021), 2 Oh et al. (2024), 3 Neven (2024)

Benchmark of random circuit sampling 3
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Hamiltonian

ℋ =෍

𝑗

−𝐽 ො𝑎𝑗
†
ො𝑎𝑗+1 + ℎ. 𝑐. +

𝑈

2
ො𝑛𝑗 ො𝑛𝑗 − 1

Real-time simulation 1

Analog quantum simulator: ultracold atoms

Classical benchmark: tensor networks (MPS)

Experimental results

“the controlled [quantum] dynamics runs for longer times 
than present classical algorithms can keep track of” 1

Backup: do we really need quantum computing?

Why is(n’t) classical computing enough?Example: 1+1D Bose-Hubbard model

1 Trotzky et al. (2012) 

...

Daley et al. (2022)

Challenges

No efficient parametrization of highly entangled states

In real-time evolution, tensor size can grow exponentially
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1 Zohar et al. (2013), ..., 2 Horn (1981), ..., 3 Banerjee et al. (2012), ..., 
4 Klco et al. (2018), ..., 5 Raychowdhury, Stryker (2020)

Problem

Gauge invariance requires imposing local constraints

First approach

Penalize unphysical states,3 e.g. ℋpenalty = 𝜆 σ𝑗=1
𝑁 𝑄𝑗

2

Second approach

Analytically solve Gauß law at every site 4

Third approach

Gauge-invariant formulation, e.g. loop-string-hadron 5

Many more approaches…

Problem

Continuous gauge theory requires ∞-dim. Hilbert space

First approach

Integrate out gauge field: only possible in 1+1D

Second approach

Approximate gauge group:1 e.g. 𝑈 1 → ℤn

Third approach

Truncate irreps:2 e.g. for 𝐹𝑗 𝑙 = |𝑙⟩, use finite 𝑙 < 𝐿

Many more approaches…

Backup: dealing with gauge fields

Gauge invarianceInfinite Hilbert space
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Dimensionless spin Hamiltonian 1 

ℋ = 𝑥෍

𝑛=0

𝑁−2

𝜎𝑛
+𝜎𝑛+1

− + 𝜎𝑛
−𝜎𝑛+1

+ +
1

2
෍

𝑛=0

𝑁−2

෍

𝑘=0

𝑛

−1 𝑘 + 𝜎𝑘
𝑧

2

from mapping 𝜙𝑛
†
𝜙𝑛+1 → 𝜎𝑛

+𝜎𝑛+1
− and 𝜙𝑛

†
𝜙𝑛 →

1

2
(𝜎𝑛

𝑧 + 𝕀)

Quantum computer

Measurement of 𝜓 𝑶 𝜓 with 𝑶 ∈ 𝕀, 𝜎𝑧 ⊗𝑁

ℋ = σ𝑘 ℎ𝑘𝑈𝑘
∗𝑶𝒌𝑈𝑘 with 𝑈𝑘

∗𝑶𝒌𝑈𝑘 ∈ 𝕀, 𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧 ⊗𝑁

Original Hamiltonian

ℋ = −
𝑖

2𝑎
෍

𝑛=0

𝑁−2

𝜙𝑛
†
𝑒𝑖𝜃𝑛𝜙𝑛+1 − h. c. +

𝑎𝑔2

2
෍

𝑛=0

𝑁−2

𝐹𝑛
2

with 𝜃𝑛 = −𝑎𝑞𝐴𝑛
1 , 𝑔𝐹𝑛 = 𝐸𝑛, 𝜃𝑛, 𝐿𝑚 = 𝑖𝛿𝑛𝑚, 𝜃𝑛 ∈ [0,2𝜋]

Eliminate 𝜽𝒏

𝜙𝑛
†
𝑒𝑖𝜃𝑛𝜙𝑛+1 → 𝜙𝑛

†
𝜙𝑛+1 from gauge transformation:

𝜙𝑛 → ς𝑘=0
𝑛−1 𝑒−𝑖𝜃𝑛 𝜙𝑛 and 𝜙𝑛

†
→ 𝜙𝑛

† ς𝑘=0
𝑛−1 𝑒𝑖𝜃𝑛−𝑘

Eliminate 𝑭𝒏

𝐹𝑛 = σ𝑘=0
𝑛 𝑄𝑘 from solving Gauß law (for OBC):

𝐹𝑛 − 𝐹𝑛−1 = 𝑄𝑛 ∀𝑛, where 𝑄𝑛 = 𝜙𝑛
†
𝜙𝑛 −

1

2
1 − −1 𝑛

Backup: measuring the energy on a quantum computer

Mapping the model to qubitsExample: massless Schwinger model

Gokhale et al. (2020)
1 Banks et al. (1976), Hamer et al. (1997)
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Goal

mitigate bit-flip errors during readout: 0
𝑝0

1 or 1
𝑝1

0

Method

replace operators by noisy operators: ෨𝜓 𝑶 ෨𝜓 → 𝜓 ෨𝑂 𝜓

1 Single 𝑍 operator: Kandala et al. (2017), strings of 𝑍 operators: Yeter-Aydeniz et al. (2019), 

generalizations: LF, Hartung, Jansen, Kühn, Stornati, Wang (2020), (2021); Alexandrou, LF, et al. (2021a), (2021b)

Operator rescaling method 1Example: measurement error mitigation

Ff

ff

Ff

ff

Ff

ff

→ 𝒁 =
1

1−𝑝0−𝑝1
෨𝑂 −

𝑝1−𝑝0

1−𝑝0−𝑝1
𝕀

|0⟩

|0⟩

𝑈(𝛼1) 𝑈(𝛼3)

𝑈(𝛼2) 𝑈(𝛼4)

𝜓 Ԧ𝛼 =

Total noisy operator: ෨𝑂
= 1 − 𝑝0 1 − 𝑝1 𝒁 + 𝑝0𝑝1 −𝑍
+ 𝑝0 1 − 𝑝1 −𝕀 + 1 − 𝑝0 𝑝1𝕀

Readout Bit Flips Probability Noisy Operator

correct 0 → 0, 1 → 1 (1 − 𝑝0)(1 − 𝑝1) ෨𝑂 = 𝒁 =
1 0
0 −1

incorrect

… for both outcomes
0 → 1, 1 → 0 𝑝0𝑝1 ෨𝑂 = −Z =

−1 0
0 1

… for outcome 0 0 → 1, 1 → 1 𝑝0(1 − 𝑝1) ෨𝑂 = − 𝕀 =
−1 0
0 −1

… for outcome 1 0 → 0, 1 → 0 1 − 𝑝0 𝑝1 ෨𝑂 = 𝕀 =
1 0
0 1

Rescaled (zero-noise) operator: 

Backup: how can we mitigate the quantum errors?
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Backup: quantum volume

TimelineConcept 

Motivation

Number of noisy qubits: no good performance measure

New performance measure

Measure capabilities and error rates of quantum device

IBM’s definition
log2 𝑉𝑄 = argmax

n≤𝑁
{min[𝑛, 𝑑 𝑛 ]}

Example

Successfully run circuit of depth 𝑑 = 8 on 𝑛 = 8 qubits: 
quantum volume is 𝑉𝑄 = 28 = 256 → size of state space 

“Success”

Most likely outputs of the circuit are computed correctly 
67% of the time with a 2σ confidence interval

Last three years

Early 2020: 𝑉𝑄 = 32 (IBM) for 𝑑 = 5, 𝑛 = 5

Early 2021: 𝑉𝑄 = 512 (Honeywell) for 𝑑 = 9, 𝑛 = 9

Early 2022: 𝑉𝑄 = 4096 (Quantinuum) for 𝑑 = 12, 𝑛 = 12

Chow, 

Gambetta (2020)
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• 𝐹 𝛽, 𝜃 = −
1

𝛽𝑉
log𝒵𝜃

• 𝑉 = 224, 𝐷 = 80, 𝛽 = 0.1, 0.6, 1.1

• Blue: 𝐷 = 112, 𝑘max = 2, 𝜒𝜃 = 2 (truncate CE)

• Orange: 𝐷 = 112, 𝑘max = 3, 𝜒𝜃 = 2

• Green: 𝐷 = 112, 𝑘max = 2, 𝜒𝜃 = 4

• Blue: 𝑉 = 212, Orange: 𝑉 = 214, Green: 𝑉 = 224

• Susceptibility: 𝜒 𝛽, 𝜃 = −𝛽
𝜕2𝐹 𝛽,𝜃

𝜕𝜃2
at 𝜃 = 𝜋

• 𝜒peak ∝ 𝑉𝛾 with 𝛾 = 1 for first-order transition

Backup: TRG results for free energy of CP(1) model
F

re
e
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n
e
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y
E
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o
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𝐹

V
o
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m
e
s
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• Extrapolation: to infinite bond dimension, 1/𝐷 → 0

• Errors: 𝛿𝑂 = 𝑂𝐷max
− 𝑂𝐷=∞ /2

2
+ 𝜂𝑂𝐷max

2
, where 𝜂 = 10−10

• Extrapolation: to infinite-volume limit, 1/𝑁 → 0

• Errors: from fitting coefficient and from comparing to next-order polynomial

• Extrapolation: to the continuum, 𝑎𝑔 → 0

• Errors: from fitting coefficient and from comparing to next-order polynomial

• Total error: around 1% for UV-finite chiral condensate Δ𝐶

Backup: MPS extrapolation procedure
B

o
n
d
 d

im
.

In
f.
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o
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m
e

C
o
n
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n
u
u
m

Plots: 𝑥 = 160, m/g = 0.07, 𝑁 = 354, 𝜃 = 0.2
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Relevance

Strong CP problem, Grand Unified Theories, …

Parameter

Continuous angle 𝜃 ∈ [0,2𝜋)

Degeneracy

Ground state has no 𝜃-dependent degeneracy

Mass generation

No mass from 𝜃-term, only from QCD and Higgs

Backup: why are topological terms in 2+1D interesting?

3+1D: Topological 𝜽-Term 2+1D: Topological Chern-Simons Term

Relevance

Quantum Hall effect, fermion/boson dualities, …

Parameter 1

Quantized Chern-Simons coupling 𝑘 ∈ ℤ, called “level”

Degeneracy 2

Ground state has 𝑘-fold degeneracy on a torus

Mass generation 3

Photon mass from Chern-Simons term: 𝑚𝛾 = 𝑘𝑒2/2𝜋

→ “Maxwell-Chern-Simons (MCS) theory”

1 Pisarski (1986)
2 Eliezer, Semenoff (1992)
3 Deser, Jackiw, Templeton (1982)
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Backup: how to formulate MCS theory on the lattice?

Problem State-of-the-Art

Continuum: 2+1D Chern-Simons term

Naïve lattice discretization:

Problem: compact gauge fields → monopoles 

→ Chern-Simons term violates gauge invariance! 1

Lattice formulation of non-compact MCS Hamiltonian 2

However, non-compact gauge field → no simulations

Lattice formulation of compact CS Hamiltonian 3

Villain approach, monopoles eliminated → gauge invariant 

However, non-commuting geometry → no simulations

Our goal: Derive compact MCS lattice Hamiltonian

Paves the way for simulations on (quantum) computers

1 Pisarski (1986), Affleck et al. (1989) 2 Lüscher (1989), …
3 Jacobson, Sulejmanpasic (2024)
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Magnetic field term: similar to QED (without monopoles)

Electric field term: modified by Chern-Simons term

Quadratic Hamiltonian: can be solved analytically!

Backup: compact MCS Lattice Hamiltonian

2+1D Maxwell Lattice Hamiltonian + Extension Compact Gauge Fields

Gauge configurations: can take values in (−∞,+∞)
Compactness: ensured by constraints on Hilbert space

Commutation relations:
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No gap: Linear dispersion relation of gapless photon

Plot of dispersion relation:

Backup: exact Solution of Lattice Hamiltonian

Pure Maxwell Theory Maxwell-Chern-Simons Theory

Gap: Chern-Simons term gives mass to photon
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Continuum limit of dispersion relation

Correctly reproduces photon mass in continuum: 1

Quantization of Chern-Simons level

Constraint from large gauge transformations: 

Correctly reproduces quantization property: 2

Backup: can we reproduce all topological properties?

Photon Mass & Quantized Coupling Ground-State Degeneracy

Degeneracy for torus 

Torus: periodic boundary conditions → non-trivial topology 

Correctly reproduce 𝑘-fold degeneracy of ground state 3

→ good cross-check / benchmark for numerical methods!

1 Deser, Jackiw, Templeton (1982)
2 Pisarski (1986)
3 Eliezer, Semenoff (1992)

Image credit: https://commons.wikimedia.org/w/index.php?curid=32176358
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Compact Maxwell Theory

Existence of quantized magnetic fluxes:

If closed surface is contractible, monopole inside

Compact MCS Theory

Monopole configuration: large gauge transformation 

→ changes Chern-Simons action → boundary terms at 

spatial infinity → action violates gauge invariance

Backup: Monopole Problem of Compact MCS Theory

1+1D Lattice Theories Modified Villain Approach

Conventional Villain Approach

Add discrete plaquette variables 𝑛, encode magnetic flux

Interpret 𝑛 as discrete gauge fields for shift symmetry:

Gauge the discrete shifts → study compact gauge theory:

Modified Villain Approach

Eliminate monopoles with Lagrange multiplier

10
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Backup: 2+1D QED With(out) Monopoles

Compact variables

For compact     , action contains terms 

Conventional Villain approach

Replace cosine terms by periodic Gaussian potential:

→ discrete gauge fields 𝑛 can take values in (−∞,+∞)
→ compactness ensured by constraints on Hilbert space

Modified Villain approach

Eliminate monopoles with Lagrange multiplier → flat 𝑛

2+1D Compact QED …

… including monopoles / instantons

… with monopoles / instantons removed

Lagrangian Formalism Hamiltonian Formalism
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Gauss’ law

Constraints on physical states in Hilbert space:

Generator for local gauge transformations

Similar as for QED, but modified by Chern-Simons term:

Backup: Constraints on Hilbert Space

Local Gauge Transformations Large Gauge Transformations

Two additional constraints

→ compactify gauge field configurations

→ similar as for QED (without monopoles)

Generators for large gauge transformations

Similar as for QED, but modified by Chern-Simons term

→ enforce quantized Chern-Simons coupling

12
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Constraints on Hilbert space …

… allow only certain gauge field configurations

Different topological sectors of theory

Transformation

… changes sector

… due to non-zero commutator

Backup: Compactification Through Constraints

Large Gauge Transformations Invariance of Partition Function

Partition function

Sum over all sectors / values of 𝑚𝑖 with equal weights

→ stays invariant under large gauge transformations

Similarity to Villain approximation:

→ obtain periodic function (i.e., compact gauge field) by 

summing over multiple non-periodic functions

Numerical simulation

Truncation of infinite sum, neglect terms with large 𝑛

13
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Backup: Large Gauge Transformation Constraint #1

2+1D Compact QED … … With Chern-Simons Term

Constraint on Hilbert space

Generator for large gauge transformation

Modified generator for large gauge transformation

14
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Constraint on Hilbert space

Generator for large gauge transformation

Backup: Large Gauge Transformation Constraint #2

2+1D Compact QED … … With Chern-Simons Term

Modified generator for large gauge transformation

15
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Non-zero commutator yields quantization condition!

Constraint from large gauge transformations: 

Correctly reproduces quantization property: 1

Backup: Compatibility of Constraints

Commutators Quantization of Chern-Simons Level

Constraints need to commute with Hamiltonian

Constraints need to commute with Gauss’ law

But: constraints do not commute with each other!

1 Pisarski (1986)
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Magnetic field term: similar to QED (without monopoles)

Electric field term: modified by Chern-Simons term

Backup: Plaquette Visualization of Lattice Hamiltonian 

Compact MCS Hamiltonian

Plaquette operator: 
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