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Qubit Regularization of the QFT

Continuum limit = UV Quantum Ceritical Point
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Example: O(3) Non-linear sigma model
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Bhattacharya, Buser, SC, Gupta, Singh PRL 126 (2021), 172001

HTrad — @ HE

¢=0,1,2,...

Qubit Regularization: Htrad — Ho
Hq = Hi=0 D He=1

Heisenberg-Comb

UV Quantum Critical Point:
J — o0

Note
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Universal Step Scaling Function
Bhattacharya, Buser, SC, Gupta, Singh PRL 126 (2021), 172001

Step scaling function: Heisenberg comb
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Another Example:

Qubit Regularization of the BKT transition
Maiti, Banerjee, SC, Marinkovic, PRL 132 (2024), 041601
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Qubit Regularization ~ D-theory

D-theory was an idea introduced by Uwe-Jens
Lattice 1998, Plenary talk by Wiese.
Brower, SC, Riederer, Wiese, NPB 693 (2004),149

d is allowed to grow so
the local Hilbert space
can grow!

RG plays an important role!
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Basis of the full Hilbert space HTrad:
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Lattice Link
dim(H,) = ds Lattice Site
dim(HS) = d)

The physical Hilbert space is obtained by
projecting to a gauge-invariant sector
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(Gauss Law

%g — X1®>\2®X3®)\4®)\5.

(s labels the basis states
of the singlet space of H¢

as =1,2,..., D(HE)

A basis of the physical Hilbert space
{As) {Aet {as))

All Clebsch-Gordan Coefficients have disappeared!






All irreps {A\¢} are allowed in the traditional theory



All irreps {A\¢} are allowed in the traditional theory

Qubit regularization works with a subset of these irreps



All irreps {A\¢} are allowed in the traditional theory

Qubit regularization works with a subset of these irreps

Antisymmetric qubit regularization scheme
Hanging Liu, SC Symmetry 14 (2022) 2 305,

Q={1,0,, ... }

\—\/-—J

T

All anti-symmetric irreps




Classical and Quantum Dimer Models






Every physical basis state of a lattice gauge
theory in irrep formulation can be viewed as a
configuration of monomers and dimers




h®

Every physical basis state of a lattice gauge
theory in irrep formulation can be viewed as a
configuration of monomers and dimers

i

oxo‘%{*"
YT

i

i
Y
™ %o P Ova

e

C



Every physical basis state of a lattice gauge
theory in irrep formulation can be viewed as a

configuration of

oxo*%{*"

:

Ty
“-.}
YT

v
L]
l;k{p\/%f%

C

monomers and dimers

Yoo

{M‘O—PO-
Yoo

-O-»0O-

i
oo
PO o S ol S 4

$900
CTT

SU(3)






Local Hamiltonians implement local changes to
the monomer-dimer configurations



Local Hamiltonians implement local changes to
the monomer-dimer configurations

Classical Hamiltonian

HQ — Zé\g é\g|D,j\> — (1—5)\,1)|Dij>'\>
14



Local Hamiltonians implement local changes to
the monomer-dimer configurations

Classical Hamiltonian

HQ — Zé\g é\g|D,j\> — (1—5>\,1)|Dij)'\>
14

Quantum Hamiltonian
HQ:Z&_5Z(Z;{P+LA{;)
¢ =

|

Non-traditional plaguette operators






c(A, o, N al) [N, oY\ «f

(N a, N, ') |\ a){(\, a



Up = > c(ha X, o) [N, o)\ q

Uy = ) (e N o) Yoy

Ao, N o

A simple example in the AS scheme:

A1 5\1 1 ()‘1)

O k o)
; \)\2 Jp ()\2)_
<: /> }
5\5% A3 (As) Kb f (A3)"
A5 ® © )\ (As)™ (A3)~

)\4 5\4 )\4 ) +



Up = > c(ha X, o) [N, o)\ q
U, = D A a N, o) N a) (N, o
Ao\ o

A simple example in the AS scheme:

A\ (A)" (M)~

Models are sign problem free
if the coefficients are positive and real
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Asymptotic Freedom of Yang Mills theory

Deconfined Confined massive
phase at high phase at zero
temperatures temperatures

Classical lattice gauge theories may already show this
finite temperature phase transitions

Think about the analogy with the Ising model!
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Classical Hamiltonian

HQ — Zé\g ég|D,j\> — (1—5>\,1)|Dij>'\>
4

A “confinement” observable at
finite temperatures
Confined phase: Y ~ Const

1 Ly y
X = V ; 7 Deconfined phase: X ~~ L3

Expectation from traditional lattice gauge theory

SU(2): Ising transition SU(3): Z3 transition
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Quantum Hamiltonian
HQ:Zg€_52(0P+Z;{;)
¢ P

|

Non-traditional plaguette operators

SU(2) gauge theory
—O—+-O—
—O—»—O—m

Confinement Observable: Es(w) = Tr(Hge °He)/Tr(e=PHe)
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reduces the string tension as expected
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It is possible to extend these calculations
to higher dimensions

Developing efficient algorithms will be
challenging

But at least there are no sign problems!
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Conclusions

Qubit Regularization of gauge theories suggests the
study of simple sign-problem free dimer-models

Think beyond traditional Hamiltonians!

Both confined and deconfined phases exist!

Can Yang-Mills theory arise at a quantum critical point
of some guantum dimer model?



