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Gauss’ Law

Some theories of interest are gauge theories.

Usually, (e.g.) start with exact diagonalization:

It is useful to know how many states are gauge-invariant:

1) Resource estimation

2) Crosscheck
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Many ways have been designed to make

the Hilbert space finite-dimensional:

Many schemes for truncating the Hilbert space

Quantum Link Models Truncation in electric field basis

Finite subgroups Orbifold q-deformation

Mixed basis

Many more…

Simple formula for # 

gauge-invariant states Harder

Fuzzy Finite subsets
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Finite gauge groups

Idea: replace the gauge group (a Lie group) with a finite subgroup 𝐺.

e.g.     ℤ𝑁 ≤ 𝑈 1 ,

𝑄8 ≤ 𝑆𝑈 2 ,

S(1080) ≤ 𝑆𝑈(3)

The link variable 𝑈 ∈ 𝐺 can take only finitely-many values.

Hilbert space is finite-dimensional.

[Hasenfratz & Niedermayer ’01]

- Continuum limit via improved actions [Alexandru et al ’19]

- Can construct Hamiltonian [Orland ‘91, Harlow & Ooguri ’18,   

Mariani, Pradhan, Ercolessi ’23]
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Setting: discretize space as a graph:

Put one group element 𝑔𝑙 ∈ 𝐺 per link 𝑙

Orthonormal basis of Hilbert space |𝑔𝑙⟩

ℋ𝑡𝑜𝑡 =ໆ

𝑙𝑖𝑛𝑘𝑠

ℂ[𝐺]

Gauge transformations act as:

𝒢 𝑔𝑙 = |𝑔𝑥𝑔𝑙𝑔𝑦
−1⟩

𝑥 𝑦

Gauge-invariant states satisfy:

𝒢 𝜓 = 𝜓

ℋ𝑝ℎ𝑦𝑠

They form the physical Hilbert space

Same action

On every link

𝑙



Counting gauge-invariant states

Write down explicit projector 𝑃:ℋ𝑡𝑜𝑡 → ℋ𝑝ℎ𝑦𝑠

[Mariani, Pradhan, Ercolessi 2023]

[Mariani 2024, Mariani (in prep.)]

𝑃 =
1

𝐺 𝑉
෍

𝒢∈𝐺𝑉

𝒢 𝑃2 = 𝑃



Counting gauge-invariant states

Write down explicit projector 𝑃:ℋ𝑡𝑜𝑡 → ℋ𝑝ℎ𝑦𝑠

[Mariani, Pradhan, Ercolessi 2023]

[Mariani 2024, Mariani (in prep.)]

𝑃 =
1

𝐺 𝑉
෍

𝒢∈𝐺𝑉

𝒢 𝑃2 = 𝑃

dimℋ𝑝ℎ𝑦𝑠 = tr 𝑃 =
1

𝐺 𝑉
෍

𝒢∈𝐺𝑉

tr 𝒢

eigenvalue 1 

eigenvalue 0 

∈ ℋ𝑝ℎ𝑦𝑠

not in ℋ𝑝ℎ𝑦𝑠
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The dimension of the physical subspace 

ℋ𝑡𝑜𝑡

ℋ𝑝ℎ𝑦𝑠

ℋ𝑡𝑜𝑡

For a pure gauge theory with arbitrary finite group 

𝐺 on an arbitrary lattice with 𝑉 sites and 𝐸 links:

dimℋ𝑡𝑜𝑡 = 𝐺 𝐸

dimℋ𝑝ℎ𝑦𝑠 =෍

𝐶

𝐺

𝐶

𝐸−𝑉

𝐶 are the conjugacy classes of 𝐺, i.e. 𝑔1 and 𝑔2
are in the same 𝐶 iff 𝑔2 = 𝑔 𝑔1 𝑔

−1.

[Mariani, Pradhan, Ercolessi 2023]

[Mariani 2024]
Remember assumption: Gauss law the same

everywhere.
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Variants of this formula: scalar fields

ℋ𝑡𝑜𝑡

ℋ𝑝ℎ𝑦𝑠

ℋ𝑡𝑜𝑡

Can also derive a formula for gauge+scalar theories:

dimℋ𝑝ℎ𝑦𝑠 =෍

𝐶

𝐺

𝐶

𝐸−𝑉

𝜒 𝐶 𝑉

[Mariani (in preparation)]

𝜒 = tr𝜌 is the character of the gauge 

representation 𝜌 of the scalar field.

Scalar field valued in an arbitrary finite set 𝑆,

its local Hilbert space is ℂ[𝑆].
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Variants of this formula: arbitrary charges

ℋ𝑡𝑜𝑡

ℋ𝑝ℎ𝑦𝑠

ℋ𝑡𝑜𝑡

If we put arbitrary charges on the lattice sites, get instead:

dimℋ𝑝ℎ𝑦𝑠 =෍

𝐶

𝐺

𝐶

𝐸−𝑉

ෑ

𝑥

𝜒𝑥 𝐶

[Mariani (in preparation)]

𝜒𝑥 = tr𝜌𝑥 is the character of the representation 𝜌𝑥 at site 𝑥.
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Variants of this formula: arbitrary charges

If we put arbitrary charges on the lattice sites, get instead:

dimℋ𝑝ℎ𝑦𝑠 =෍

𝐶

𝐺

𝐶

𝐸−𝑉

ෑ

𝑥

𝜒𝑥 𝐶

[Mariani (in preparation)]

𝜒𝑥 = tr𝜌𝑥 is the character of the representation 𝜌𝑥 at site 𝑥.

Example: no charged states on a torus.

ℤ𝑵 theory. Place 𝑞 = 1 charge on each site.

dimℋ𝑝ℎ𝑦𝑠 = 𝑁𝐸−𝑉 ෍

𝑘=0

𝑁−1

𝑒2𝜋𝑖𝑘
𝑉
𝑁

which is zero unless 𝑄𝑡𝑜𝑡 = 𝑉 ≡ 0 (mod 𝑁).
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Variants of this formula: arbitrary charges

If we put arbitrary charges on the lattice sites, get instead:

dimℋ𝑝ℎ𝑦𝑠 =෍

𝐶

𝐺

𝐶

𝐸−𝑉

ෑ

𝑥

𝜒𝑥 𝐶

[Mariani (in preparation)]

𝜒𝑥 = tr𝜌𝑥 is the character of the representation 𝜌𝑥 at site 𝑥.

Example: Dimer model.

ℤ𝑵 theory. Stagger 𝑞 = ±1 charges.

dimℋ𝑝ℎ𝑦𝑠 = 𝑁𝐸−𝑉 ෍

𝑘=0

𝑁−1

|𝑒2𝜋𝑖𝑘
𝑉
𝑁| = 𝑁𝐸−𝑉+1

which is not zero!
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Variants of this formula: C-periodic boundaries

More general boundary conditions can also be 

treated with the same method. 

Example: C-periodic boundary conditions

[Mariani (in preparation)]

𝐶ΦΦ

[Kronfeld & Wiese (1991),

Wiese (1992)]

Total Hilbert space is the same, 

but extended operators (e. g. 

Gauss law) are modified.
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Variants of this formula: C-periodic boundaries

More general boundary conditions can also be 

treated with the same method. 

Example: C-periodic boundary conditions

[Mariani (in preparation)]

𝐶ΦΦ

[Kronfeld & Wiese (1991),

Wiese (1992)]

dimℋ𝑝ℎ𝑦𝑠 = ෍

𝐶, 𝐶=𝐶−1

𝐺

𝐶

𝐸−𝑉

Total Hilbert space is the same, 

but extended operators (e. g. 

Gauss law) are modified.

i.e. sum over only those conjugacy classes 𝐶 which

are self-inverse (they contain all their inverses).
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Variants of this formula: C-periodic boundaries

More general boundary conditions can also be 

treated with the same method. 

Example: C-periodic boundary conditions

[Mariani (in preparation)]

𝐶ΦΦ

[Kronfeld & Wiese (1991),

Wiese (1992)]

dimℋ𝑝ℎ𝑦𝑠 = ෍

𝐶, 𝐶=𝐶−1

𝐺

𝐶

𝐸−𝑉

Total Hilbert space is the same, 

but extended operators (e. g. 

Gauss law) are modified.

Example: charged states on a C-per torus.

ℤ𝑵 theory. Place 𝑞 = 1 charge on each site.

dimℋ𝑝ℎ𝑦𝑠 = 𝑁𝐸−𝑉 ෍

𝑘=0

0

𝑒2𝜋𝑖𝑘
𝑉
𝑁 = 𝑁𝐸−𝑉

which is not zero!
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ℋ𝑡𝑜𝑡

How to describe the physical subspace?

ℋ𝑝ℎ𝑦𝑠

Gauss’ Law

(traced) Wilson loops do not necessarily span ℋ𝑝ℎ𝑦𝑠

ℋ𝑡𝑜𝑡

ℋ𝑝ℎ𝑦𝑠

ℋ𝑡𝑜𝑡

For 𝑆𝑈(𝑁) Wilson loops in the fundamental span ℋ𝑝ℎ𝑦𝑠.

[Durhuus ’80, Sengupta ’94, Lévy ‘04]

See [Mariani ‘24] for a summary.
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ℋ𝑡𝑜𝑡

How to describe the physical subspace?

ℋ𝑝ℎ𝑦𝑠

Gauss’ Law

(traced) Wilson loops do not necessarily span ℋ𝑝ℎ𝑦𝑠

ℋ𝑡𝑜𝑡

ℋ𝑝ℎ𝑦𝑠

ℋ𝑡𝑜𝑡

For 𝑆𝑈(𝑁) Wilson loops in the fundamental span ℋ𝑝ℎ𝑦𝑠.

For direct products of 𝑆𝑈(𝑁), 𝑈 𝑁 , 𝑆𝑂 𝑁 , 𝑂(𝑁) and 

Abelian groups, Wilson loops span ℋ𝑝ℎ𝑦𝑠, but all irreps

may be needed (e.g. 𝑆𝑂 2𝑁 ). 

For other groups such as 𝐺2 it is not known.

[Durhuus ’80, Sengupta ’94, Lévy ‘04]

Cannot use Wilson loops for general description.

(various other implications: entanglement entropy, etc)
See [Mariani ‘24] for a summary.
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Gauge-equivalence classes?

Split configurations into gauge-equivalence classes 𝑋𝑖

⟩|𝑋𝑖 =
1

𝑋𝑖
෍

𝑔∈𝑋𝑖

| ⟩Ԧ𝑔

ℋ𝑡𝑜𝑡

𝑋1

𝑋2

𝑋3

𝑋4

𝑋5

𝑋6
i.e. superimpose all gauge-equivalent configurations.



Gauge-equivalence classes?

Split configurations into gauge-equivalence classes 𝑋𝑖

⟩|𝑋𝑖 =
1

𝑋𝑖
෍

𝑔∈𝑋𝑖

| ⟩Ԧ𝑔

ℋ𝑡𝑜𝑡

𝑋1

𝑋2

𝑋3

𝑋4

𝑋5

𝑋6
i.e. superimpose all gauge-equivalent configurations.

We don’t know the 

normalization

Gauge-equivalence

classes do not all

have the same size
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Better way: use holonomies (untraced Wilson loops)

How to describe the physical subspace?

[Mariani ‘24]

see also: [Durhuus ‘80]

similar ideas in:

[Grabowska, Kane, Bauer ‘24]

[Burbano, Bauer ‘24]
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Construct basis of holonomies based at the same point (need 𝐸 − 𝑉 + 1):

Holonomy states

ℎ = 𝑔1𝑔2𝑔3𝑔4
−1𝑔1

−1

[Durhuus ‘80]
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Construct basis of holonomies based at the same point (need 𝐸 − 𝑉 + 1):

Holonomy states

ℎ = 𝑔1𝑔2𝑔3𝑔4
−1𝑔1

−1 looks like this

ℎ1, ℎ2, … , ℎ𝐸−𝑉+1

Gauge-invariant except at the base point:

ℎ𝑖 → 𝑔ℎ𝑖𝑔
−1 for all 𝑖

[Durhuus ‘80]
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Construct basis of holonomies based at the same point (need 𝐸 − 𝑉 + 1):

Holonomy states

ℎ = 𝑔1𝑔2𝑔3𝑔4
−1𝑔1

−1 looks like this

ℎ1, ℎ2, … , ℎ𝐸−𝑉+1

ℎ𝑖 → 𝑔ℎ𝑖𝑔
−1 for all 𝑖

Two configurations Ԧ𝑔 and Ԧ𝑔′ are gauge-

equivalent iff their holonomies are related by

conjugation, ℎ𝑖 → 𝑔ℎ𝑖𝑔
−1 for all 𝑖.

[Durhuus ‘80]

Gauge-invariant except at the base point:
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How to describe the physical subspace?

[Mariani ‘24]

Holonomy states: | ⟩ℎ1, ℎ2, … , ℎ𝐸−𝑉+1 =
1

𝐺 𝑉−1
෍

𝑔∈ℎ

| ⟩Ԧ𝑔

ℋ𝑡𝑜𝑡

i.e. same number of 

configurations in each

holonomy class.
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How to describe the physical subspace?

[Mariani ‘24]

Holonomy states: | ⟩ℎ1, ℎ2, … , ℎ𝐸−𝑉+1 =
1

𝐺 𝑉−1
෍

𝑔∈ℎ

| ⟩Ԧ𝑔

ℋ𝑡𝑜𝑡

i.e. same number of 

configurations in each

holonomy class.

- Holonomy states are an analytical solution to almost all

gauge constraints.

- They form a tensor product Hilbert space.

- Local operators are 𝑠-sparse.
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Consider the 𝑈(1) Quantum Link Model on an 

arbitrary graph, with spin 𝑠 ∈
1

2
ℤ .

On each link the electric field takes a value

𝑗𝑙 = −𝑠,−𝑠 + 1,… , 𝑠 − 1, 𝑠

Gauge-invariant states (for example on a square 

lattice) satisfy

𝑗1 + 𝑗2 − 𝑗3 − 𝑗4 = 0
For the four links attached to the site.

Already known to mathematicians [Beck, Zlaslavsky ‘03]: 

- 𝑠 integer:          integer 𝒌-flow (𝑘 = 𝑠 + 1)

- 𝑠 half-integer:   odd-valued integer 𝒌-flow (𝑘 = 2𝑠 + 1)

- 𝑠 = 1/2: nowhere-zero integer 𝟐-flow

Counting gauge-invariant states

in the U(1) quantum link model

is an open problem in graph theory.

Mathematicians have shown that

dimℋ𝑝ℎ𝑦𝑠
𝑄𝐿𝑀

= polynomial in 𝑠. [Kochol ‘02]

dimℋ𝑝ℎ𝑦𝑠
𝑄𝐿𝑀

does not depend simply

on 𝐸 and 𝑉 (more geometric info needed)

On an arbitrary graph, with arbitrary

spin on each link, and arbitrary charges

the problem is #P-hard.

[e.g. Baldoni-Silva et al ’03]



What about Quantum Link Models?

Consider the 𝑈(1) Quantum Link Model on an 

arbitrary graph, with spin 𝑠 ∈
1

2
ℤ .

On each link the electric field takes a value

𝑗𝑙 = −𝑠,−𝑠 + 1,… , 𝑠 − 1, 𝑠

Gauge-invariant states (for example on a square 

lattice) satisfy

𝑗1 + 𝑗2 − 𝑗3 − 𝑗4 = 0
For the four links attached to the site.

Compare with ℤ𝑁, 𝑁 = 2𝑠 + 1 where the condition is

𝑗1 + 𝑗2 − 𝑗3 − 𝑗4 = 0 (mod 𝑁)
where 𝑗 = 0, 1, … , 𝑁 − 1. Then here the answer is

𝑁𝐸−𝑉+1



Conclusions

Fermions anticommute at arbitrary 

distance: non-local Hilbert space. 

Difficult (work in progress)

Can compute dimℋ𝑝ℎ𝑦𝑠 for finite groups 

in various settings.

Can we do gauge anomalies?   [Witten ’82]

i.e. Gauge anomaly ↔ dimℋ𝑝ℎ𝑦𝑠 = 0 ?



Backup slides



Gauge anomalies?

Fermions anticommute at arbitrary distance: non-local Hilbert space. Difficult (work in progress)

Can compute dimℋ𝑝ℎ𝑦𝑠 for finite groups in various settings.

Example. [Witten ’82] Global anomaly for odd no. of 𝑆𝑈(2) left-handed fermion doublets.

𝑍 = 0Consequence: 𝑂 =
0

0

Idea: can we detect anomalies by computing dimℋ𝑝ℎ𝑦𝑠? 



Gauge anomalies?

Fermions anticommute at arbitrary distance: non-local Hilbert space. Difficult (work in progress)

Can compute dimℋ𝑝ℎ𝑦𝑠 for finite groups in various settings.

Example. [Witten ’82] Global anomaly for odd no. of 𝑆𝑈(2) left-handed fermion doublets.

𝑍 = 0Consequence: 𝑂 =
0

0

Why? 𝑍 = tr(𝑒−𝐻𝑃) 𝑂 =
tr(𝑒−𝐻𝑂𝑃)

tr(𝑒−𝐻𝑃)

𝑃 is the projector on 

the gauge-invariant 

states

Idea: can we detect anomalies by computing dimℋ𝑝ℎ𝑦𝑠? 

i.e. no gauge-invariant states! Anomalies on the lattice:

[Lüscher ‘98, Bär ’02]



What about electric field truncations?

Choose an eigenbasis of the electric field ⟩|𝑗𝑚𝑛 , where 𝑗
indexes the irreps of 𝑆𝑈(𝑁). Truncate to 𝑗 ≤ 𝑗max.
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1

𝐺 𝑉
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tr 𝒢

Choose an eigenbasis of the electric field ⟩|𝑗𝑚𝑛 , where 𝑗
indexes the irreps of 𝑆𝑈(𝑁). Truncate to 𝑗 ≤ 𝑗max.

Can write again:



What about electric field truncations?

dimℋ𝑝ℎ𝑦𝑠 = tr 𝑃 =
1

𝐺 𝑉
෍

𝒢∈𝐺𝑉

tr 𝒢

Choose an eigenbasis of the electric field ⟩|𝑗𝑚𝑛 , where 𝑗
indexes the irreps of 𝑆𝑈(𝑁). Truncate to 𝑗 ≤ 𝑗max.

Can write again:

To compute the trace, need character identity:

෍

𝑗∈Irrep

𝜒𝑗 𝑔
∗𝜒𝑗 ℎ = ቐ

𝐺

𝐶
if 𝑔, ℎ ∈ 𝐶 (same conjugacy class)

0 otherwise

But if we keep only some irreps (i.e. 𝑗 ≤ 𝑗max) the formula no 

longer simplifies.
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For finite subgroup 𝐺 ≤ SU(𝑁) in 4D (zero temperature, pure gauge)

0 ∞

SU(𝑁)

𝐺
𝑔2

Deconfined Confined Transition

For 𝐺 finite, the transition is only first order

effective theory

requires improvement

[Hasenfratz & Niedermayer ’01]

Q: Is there an action/formulation with a 

second-order transition?

Finite subgroups
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Laplacian on a discrete group

Hamiltonian requires tr(𝐸2) but for a finite group 𝑬 does not exist!

But this is a Laplacian in group space! Construct Laplacian for finite groups

[Mariani & Ercolessi ‘20]

but see also

[Orland ‘91]

[Caspar et al ‘16]

[Harlow & Ooguri ‘18]

Geometric structure of a finite group is a graph:

Vertices = group elements

Edges based on multiplication structure.

𝐷4 = {1, 𝑟, 𝑟2, 𝑟3, 𝑠, 𝑟𝑠, 𝑟2𝑠, 𝑟3𝑠}

Example for the finite group

Every graph has a 

graph Laplacian!
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