

## **QCD** deconfinement transition line up to $\mu_R = 400$ MeV from finite volume lattice simulations

Bern, 20.01.2025

**71**.

Szabolcs Borsányi, Zoltán Fodor, Jana N. Guenther, Paolo Parotto, Attila Pásztor, Ludovica Pirelli, Kálmán K. Szabó, Chik Him Wong

## A research area that is affected by the sign problem

- Active area of research: search for Critical End Point in  $(T, \mu_B)$  plane
- High  $\mu_R$  needed! But...



Plot from arXiv:1906.00936





### ...we can not simulate there!

$$Z = \int DU e^{-S_G[U]} \det M(U, m, \mu_B)$$

- $\det M(U,m,\mu_B)$  is real and positive only for  $\mu_B^2 \leq 0$
- we can't measure directly any observable with Monte Carlo methods for  $\mu_B^2 > 0$

$$< O > = \frac{1}{N_{\text{conf}}} \sum_{i=0}^{N_{\text{conf}}} O[U_i]$$



 Let's see how to circumvent the problem



## **Analytical continuation**

• simulate at  $\mu_R^2 < 0$  and extrapolate to  $\mu_{R}^{2} > 0$ 



## Taylor/T' expansion

• compute the derivatives at  $\mu_R = 0$ 







## Reweighting

$$< O >_{\mu_B} = \frac{\int DU e^{-S_G[U]} O(U) \frac{\det M}{\det M}}{\int DU e^{-S_G[U]} \frac{\det M(U, U, U)}{\det M(U, U, U)}}$$
$$= \frac{\left\langle O \frac{\det M(\mu_B)}{\det M(0)} \right\rangle_{\mu_B=0}}{\left\langle \frac{\det M(\mu_B)}{\det M(0)} \right\rangle_{\mu_B=0}}$$

$$\frac{Z(\mu_B)}{Z(0)} = \left\langle \frac{\det M(\mu_B)}{\det M(0)} \right\rangle_{\mu_B=0}$$

• make the simulations at  $\mu_B = 0$  and correct the weights in the observable measure

 $\frac{A(U, m, \mu_B)}{M(U, m, 0)} \det M(U, m, 0)$   $\frac{(m, \mu_B)}{(J, m, 0)} \det M(U, m, 0)$ T





- Is that enough?

## Watch out!

- Analytical continuation: lots of systematics
- Taylor / T' methods:
  - a lot of cancellations inside the terms
  - uncontrolled truncation in  $\mu_R$
- Reweighting:

### Computation of the complex determinant can be circumvented with these methods







 need some care if you use staggered fermions arXiv:2308.06105





## A small trip in **Reweighting with staggered fermions**

- Staggered fermions: rooting
- We look at 2+1 flavours theory with  $\mu_{\mu}$

• 
$$Z_{2+1}(T,\mu_q) = \int DU e^{-S_G[U]} \det M(U,m_q,\mu_q)^{\frac{1}{2}} \det M(U,m_s,0)^{\frac{1}{4}}$$

$$\frac{Z_{2+1}(\mu_q)}{Z_{2+1}(0)} = \left\langle \frac{\det M(U, m_q, \mu_q)^{\frac{1}{2}}}{\det M(U, m_q, 0)^{\frac{1}{2}}} \right\rangle_{\mu_B=0}$$

formalism

### arXiv:2308.06105

$$\mu = \mu_d = \mu_q, \, \mu_s = 0$$

, can be computed with reduced matrix



- the eigenvalues  $\{\lambda_k\}$  of the reduced matrix do not depend on  $\mu_q$
- solve the rooting ambiguity: take the square root for each eigenvalue

$$\frac{\det M(U, m_q, \mu_q)^{\frac{1}{2}}}{\det M(U, m_q, 0)^{\frac{1}{2}}} = e^{-3N_s^3\mu_q/T} \prod_{k=1}^{6N_s^3} \sqrt{\frac{\lambda_k[m, U] - e^{\mu_q/T}}{\lambda_k[m, U] - 1}}$$

- other 2 reweighting methods
  - phase reweighting  $\frac{2}{7}$



it could have an overlap problem (long tails in the weights) but we crosscheck with

$$\frac{Z_{2+1}}{Z_{2+1}^{PQ}} = \left\langle \frac{\det M(U, m_q, \mu_q)^{\frac{1}{2}}}{|\det M(U, m_q, \mu_q)^{\frac{1}{2}}|} \right\rangle_{PQ}$$

$$\frac{Q_{2+1}}{Q_{2+1}^{PQ}} = \left\langle \frac{\operatorname{Re} \det M(U, m_q, \mu_q)^{\frac{1}{2}}}{|\operatorname{Re} \det M(U, m_q, \mu_q)^{\frac{1}{2}}|} \right\rangle_{SQ}$$





- Now, let's look at the light quark density (e.g. for equation of state studies)
- Plot:  $\hat{n}_L / \hat{\mu}_q$ , 16<sup>3</sup> × 8 lattice,  $m_\pi = 135$  MeV

**A steep rise** at 
$$\mu_q \sim \frac{m_\pi}{2}$$
 !! Why?

- Is it an overlap problem?
- No, the 3 reweighting techniques do the same
- It also a discretisation effect



T=130 MeV. 2 stout smearing,





- $\rightarrow$  no rooting
- reweighting and Taylor (up to 12th order) agree
- The culprit is actually the rooting!



• rise at  $m_{\pi}/2$  for the reweighted case





- it seems that at the moment our favourite technique is Taylor method then
- But also there we need to be careful

## **Cancellations problem in Taylor method**

• Goal: derivatives of an observable O w.r.t.  $\mu_i$  (*i*: flavour)  $\partial_i O$ 

• Given 
$$A_i = \frac{\partial \log(\det M)^{\frac{1}{4}}}{\partial \mu_i} = \frac{1}{4} \operatorname{Tr}(4)$$

- for O we have the generic chain rule formula
- $\partial_i < O > = < OA_i > + < \partial_i O > < O > < A_i >$

 $(M_i^{-1}M_i') \rightarrow \langle A_i \rangle = \partial_i \log Z$ 

11

- the bigger is the order n of derivative, the more terms we have...
- and the bigger is the cancellation between them!
  - Below:  $\partial^n \log Z / \partial \mu^n$  (ignoring the flavour) n = 1 $\langle A \rangle$ n = 2 $< A^2 > + < A' > - < A >^2$ n = 3  $< A^3 > +2 < A >^3 -3 < A > < A^2 >$ + < A'' > + 3 < AA' > -3 < A > < A' > $n = 4 \qquad < A^4 > +4 < AA'' > +< A''' > -4 < A > < A^3 > -4 < A > < A'' >$  $+6 < A^2A' > +3 < A'A' > -6 < A^2 > < A' > -3 < A' > < A$ +12 < A > < A > < A' > -12 < A > < AA' > $+12 < A > < A > < A^2 > -3 < A^2 > < A^2 > -6 < A >^4$





- This cancellation actually scales with the volume  $\rightarrow$  how?
- Derivatives of  $\log Z$  are related to quark number susceptibilities

 $\chi_{ijk}^{uds}(T,\mu_u,\mu_d,\mu_s) = \frac{T}{V} \frac{\partial^{i+j+k} \log Z}{(\partial_u)^i (\partial_d)^j (\partial_s)^k}$ 

•  $\chi_1^u \sim \langle u \rangle \sim n_u$ •  $\chi_2^u \sim \frac{1}{V} < u^2 > - < u >^2$ : a variance / V, we except O(1)

•  $\chi^u_2$  contains terms like  $\frac{1}{V}(\langle A^2 \rangle - \langle A \rangle^2) \rightarrow \langle A^2 \rangle \sim V$ 





- the cancellation is O(V)
- Inside  $\chi_6^{\mu}$ :  $\frac{1}{V}(\langle A^6 \rangle 15 \langle A^2 \rangle^3) \sim O(1)$
- the cancellation is  $O(V^2)$

100000

10000

- $\chi_{2n}$ : cancellation is  $O(V^{n-1})$ 1000
- we need small volumes!! 100

10

• Inside  $\chi_4^u$  we have couples of terms like  $\frac{1}{V}(\langle A^4 \rangle - 3 \langle A^2 \rangle^2) \sim O(1)$ • the concollation is O(V)

### contributions normalised to sum



## How small can the volume be?

- Small enough to take care of the cancellations
- Big enough to study phase transitions

- It depends on the observables: arXiv:2405.12320. (2+1+1 4stout staggered fermions)
- Two groups of observables related to QCD transition between hadron and Quark Gluon Plasma phases:
  - chiral observables ( $SU(2) \times SU(2)$  symmetry in limit  $m_a \rightarrow 0$ )
  - deconfinement observables ( $Z_3$  symmetry in limit  $m_q \rightarrow \infty$ )







### **Chiral observables**

## • order parameter: chiral condensate $\langle \bar{\psi}\psi \rangle = \frac{T \partial \log Z}{V \partial m_{ud}}$

# chiral susceptibility $\chi = \frac{T}{V} \frac{\partial^2 \log Z}{\partial m_{ud}^2}$

 disconnected chiral susceptibility  $= \frac{T}{V} \left( \frac{\partial^2 \log Z}{\partial m_u \partial m_d} \right)_{m_u = m_d}$ Xdisc





### **Deconfinement observables**

• order parameter: Polyakov loop  $P \sim e^{-F_Q/T}$ 



•  $F_O$ : static quark free energy





- scheme-independent peak position
  - introduced by TUMQCD Collaboration arXiv:1603.06637







•  $T_c^{(S_Q)} < T_c^{(\chi_{disc}^R)} < T_c^{(\chi^R)}$  for  $LT \ge 3$ 







## **Volume effects at larger** $\mu_B$





## 48<sup>3</sup>x12 40<sup>3</sup>x12 32<sup>3</sup>x12

no signs of CEP!

there are observables that have small volume effects  $\rightarrow$  use them!

 $(\mu_B/T)^2$ 

deconfinement observable









## **Coming to the last results**

Going back over the path up here:

- Goal: explore phase diagram up to high  $\mu_R$
- $\rightarrow$  Sign problem: complex fermion determinant in MC simulations
- Chosen method: Taylor (no rooting ambiguities)
- Still cancellations problem!  $\rightarrow$  we need small volumes
- For small volumes we can rely better on deconfinement observables
- Next step: QCD transition line up to  $\mu_B = 400$  MeV from the peak position of  $S_O$  in a  $16^3 \times 8$  lattice.



arXiv:2410.06216





## Results

- First step: compute the derivatives of  $Q = |\langle P \rangle|^2$
- As said, it is difficult

n = 6

 $\partial_u^6 Q = +2\langle P_R \rangle \langle F_u P_R \rangle + 20 \langle P_R \rangle \langle C_u C_u P_R \rangle + 30 \langle P_R \rangle \langle B_u D_u P_R \rangle + 30 \langle P_R \rangle \langle B_u B_u B_u P_R \rangle + 12 \langle P_R \rangle \langle A_u E_u P_R \rangle$  $+120\langle P_R\rangle\langle A_uB_uC_uP_R\rangle+30\langle P_R\rangle\langle A_uA_uD_uP_R\rangle+90\langle P_R\rangle\langle A_uA_uB_uB_uP_R\rangle+40\langle P_R\rangle\langle A_uA_uA_uC_uP_R\rangle$  $+90\langle B_u P_R \rangle \langle B_u B_u P_R \rangle + 120\langle B_u P_R \rangle \langle A_u C_u P_R \rangle + 180\langle B_u P_R \rangle \langle A_u A_u B_u P_R \rangle - 12\langle A_u P_I \rangle \langle E_u P_I \rangle$  $-120\langle A_u P_I \rangle \langle B_u C_u P_I \rangle - 60\langle A_u P_I \rangle \langle A_u D_u P_I \rangle - 180\langle A_u P_I \rangle \langle A_u B_u B_u P_I \rangle - 120\langle A_u P_I \rangle \langle A_u A_u C_u P_I \rangle$  $-120\langle A_u P_I \rangle \langle A_u A_u A_u B_u P_I \rangle - 12\langle A_u P_I \rangle \langle A_u A_u A_u A_u A_u P_I \rangle - 120\langle A_u B_u P_I \rangle \langle C_u P_I \rangle - 180\langle A_u B_u P_I \rangle \langle A_u B_u P_I \rangle - 120\langle A_u B_u P_I \rangle \langle A_u B_u P_I \rangle \langle A_u B_u P_I \rangle \langle A_u B_u P_I \rangle - 120\langle A_u B_u P_I \rangle \langle A_u B_u P_I \rangle - 120\langle A_u B_u P_I \rangle \langle A_u A_u A_u A_u A_u A_u A_u A_u P_I \rangle - 120\langle A_u B_u P_I \rangle \langle A_u B_u P_I \rangle - 120\langle A_u B_u P_I \rangle - 120\langle A_u B_u P_I \rangle - 120\langle A_u B_u P_I \rangle \langle A_u B_u P_I \rangle - 120\langle A_u$  $+30\langle A_uA_uP_R\rangle\langle D_uP_R\rangle+90\langle A_uA_uP_R\rangle\langle B_uB_uP_R\rangle+120\langle A_uA_uP_R\rangle\langle A_uC_uP_R\rangle+180\langle A_uA_uP_R\rangle\langle A_uA_uB_uP_R\rangle$  $+30\langle A_uA_uP_R\rangle\langle A_uA_uA_uA_uP_R\rangle -40\langle A_uA_uA_uP_I\rangle\langle C_uP_I\rangle -120\langle A_uA_uA_uP_I\rangle\langle A_uB_uP_I\rangle -20\langle A_uA_uA_uP_I\rangle\langle A_uA_uA_uP_I\rangle -20\langle A_uA_uA_uP_I\rangle\langle A_uA_uA_uP_I\rangle -20\langle A_uA_uA_uP_I\rangle\langle A_uA_uA_uP_I\rangle -20\langle A_uA_uA_uP_I\rangle -20\langle$  $+30\langle A_uA_uA_uA_uP_R\rangle\langle B_uP_R\rangle -2\langle F_u\rangle\langle P_R\rangle\langle P_R\rangle -60\langle D_u\rangle\langle P_R\rangle\langle B_uP_R\rangle -60\langle D_u\rangle\langle P_R\rangle\langle A_uA_uP_R\rangle$  $+60\langle D_u\rangle\langle A_uP_I\rangle\langle A_uP_I\rangle - 20\langle C_uC_u\rangle\langle P_R\rangle\langle P_R\rangle - 60\langle B_u\rangle\langle P_R\rangle\langle D_uP_R\rangle - 180\langle B_u\rangle\langle P_R\rangle\langle B_uB_uP_R\rangle$  $-240\langle B_u\rangle\langle P_R\rangle\langle A_uC_uP_R\rangle - 360\langle B_u\rangle\langle P_R\rangle\langle A_uA_uB_uP_R\rangle - 60\langle B_u\rangle\langle P_R\rangle\langle A_uA_uA_uA_uP_R\rangle - 180\langle B_u\rangle\langle B_uP_R\rangle\langle B_uP_R\rangle$  $+240\langle B_u\rangle\langle A_uP_I\rangle\langle C_uP_I\rangle+720\langle B_u\rangle\langle A_uP_I\rangle\langle A_uB_uP_I\rangle+240\langle B_u\rangle\langle A_uP_I\rangle\langle A_uA_uA_uP_I\rangle-360\langle B_u\rangle\langle A_uA_uP_R\rangle\langle B_uP_R\rangle$  $-180\langle B_u\rangle\langle A_uA_uP_R\rangle\langle A_uA_uP_R\rangle - 30\langle B_uD_u\rangle\langle P_R\rangle\langle P_R\rangle - 180\langle B_uB_u\rangle\langle P_R\rangle\langle B_uP_R\rangle - 180\langle B_uB_u\rangle\langle P_R\rangle\langle A_uA_uP_R\rangle$  $+180\langle B_u B_u \rangle \langle A_u P_I \rangle \langle A_u P_I \rangle - 30\langle B_u B_u B_u \rangle \langle P_R \rangle \langle P_R \rangle - 12\langle A_u E_u \rangle \langle P_R \rangle \langle P_R \rangle - 240\langle A_u C_u \rangle \langle P_R \rangle \langle B_u P_R \rangle$  $-240\langle A_u C_u \rangle \langle P_R \rangle \langle A_u A_u P_R \rangle + 240\langle A_u C_u \rangle \langle A_u P_I \rangle \langle A_u P_I \rangle - 120\langle A_u B_u C_u \rangle \langle P_R \rangle \langle P_R \rangle - 60\langle A_u A_u \rangle \langle P_R \rangle \langle D_u P_R \rangle$  $-180\langle A_uA_u\rangle\langle P_R\rangle\langle B_uB_uP_R\rangle - 240\langle A_uA_u\rangle\langle P_R\rangle\langle A_uC_uP_R\rangle - 360\langle A_uA_u\rangle\langle P_R\rangle\langle A_uA_uB_uP_R\rangle$  $-60\langle A_uA_u\rangle\langle P_R\rangle\langle A_uA_uA_uA_uP_R\rangle - 180\langle A_uA_u\rangle\langle B_uP_R\rangle\langle B_uP_R\rangle + 240\langle A_uA_u\rangle\langle A_uP_I\rangle\langle C_uP_I\rangle$  $+720\langle A_uA_u\rangle\langle A_uP_I\rangle\langle A_uB_uP_I\rangle+240\langle A_uA_u\rangle\langle A_uP_I\rangle\langle A_uA_uA_uP_I\rangle-360\langle A_uA_u\rangle\langle A_uA_uP_R\rangle\langle B_uP_R\rangle$  $-180\langle A_uA_u\rangle\langle A_uA_uP_R\rangle\langle A_uA_uP_R\rangle - 30\langle A_uA_uD_u\rangle\langle P_R\rangle\langle P_R\rangle - 360\langle A_uA_uB_u\rangle\langle P_R\rangle\langle B_uP_R\rangle$  $-360\langle A_uA_uB_u\rangle\langle P_R\rangle\langle A_uA_uP_R\rangle + 360\langle A_uA_uB_u\rangle\langle A_uP_I\rangle\langle A_uP_I\rangle - 90\langle A_uA_uB_uB_u\rangle\langle P_R\rangle\langle P_R\rangle$  $-40\langle A_uA_uA_uC_u\rangle\langle P_R\rangle\langle P_R\rangle - 60\langle A_uA_uA_uA_u\rangle\langle P_R\rangle\langle B_uP_R\rangle - 60\langle A_uA_uA_uA_u\rangle\langle P_R\rangle\langle A_uA_uP_R\rangle$  $+60\langle A_uA_uA_uA_uA_u\rangle\langle A_uP_I\rangle - 30\langle A_uA_uA_uA_uB_u\rangle\langle P_R\rangle\langle P_R\rangle - 2\langle A_uA_uA_uA_uA_uA_u\rangle\langle P_R\rangle\langle P_R\rangle$  $+90\langle B_u\rangle\langle D_u\rangle\langle P_R\rangle\langle P_R\rangle+540\langle B_u\rangle\langle B_u\rangle\langle P_R\rangle\langle B_uP_R\rangle+540\langle B_u\rangle\langle P_R\rangle\langle A_uA_uP_R\rangle$  $-540\langle B_u\rangle\langle B_u\rangle\langle A_uP_I\rangle\langle A_uP_I\rangle + 270\langle B_u\rangle\langle B_uB_u\rangle\langle P_R\rangle\langle P_R\rangle + 360\langle B_u\rangle\langle A_uC_u\rangle\langle P_R\rangle\langle P_R\rangle$  $+540\langle B_u\rangle\langle A_uA_uB_u\rangle\langle P_R\rangle\langle P_R\rangle+90\langle A_uA_u\rangle\langle D_u\rangle\langle P_R\rangle\langle P_R\rangle+1080\langle A_uA_u\rangle\langle B_u\rangle\langle P_R\rangle\langle B_uP_R\rangle$  $+1080\langle A_uA_u\rangle\langle B_u\rangle\langle P_R\rangle\langle A_uA_uP_R\rangle-1080\langle A_uA_u\rangle\langle B_u\rangle\langle A_uP_I\rangle\langle A_uP_I\rangle+270\langle A_uA_u\rangle\langle B_uB_u\rangle\langle P_R\rangle\langle P_R\rangle\langle$  $+360\langle A_uA_u\rangle\langle A_uC_u\rangle\langle P_R\rangle\langle P_R\rangle+540\langle A_uA_u\rangle\langle A_uA_u\rangle\langle P_R\rangle\langle B_uP_R\rangle+540\langle A_uA_u\rangle\langle A_uA_u\rangle\langle P_R\rangle\langle A_uA_uP_R\rangle$  $-540\langle A_uA_u\rangle\langle A_uA_u\rangle\langle A_uP_I\rangle + 540\langle A_uA_u\rangle\langle A_uA_uB_u\rangle\langle P_R\rangle + 90\langle A_uA_u\rangle\langle A_uA_uA_u\rangle\langle P_R\rangle\langle P_R\rangle$  $+90\langle A_uA_uA_uA_u\rangle\langle B_u\rangle\langle P_R\rangle\langle P_R\rangle - 360\langle B_u\rangle\langle B_u\rangle\langle B_u\rangle\langle P_R\rangle - 1080\langle A_uA_u\rangle\langle B_u\rangle\langle B_u\rangle\langle P_R\rangle\langle P_R\rangle$  $-1080\langle A_uA_u\rangle\langle A_uA_u\rangle\langle B_u\rangle\langle P_R\rangle\langle P_R\rangle - 360\langle A_uA_u\rangle\langle A_uA_u\rangle\langle A_uA_u\rangle\langle P_R\rangle\langle P_R\rangle$  $\partial_{\mu}^{8}Q = \text{has } 405 \text{ terms}$ 







## Is the expansion converging well?



Results from previous reference up to order 2: D'Elia, arXiv 1907.09461





- $\mu_S = 0$  vs  $n_S = 0$ : null strangeness-chemical potential vs strangeness neutrality
- interpolate the coefficients, then for each  $\mu_B$  co

• 
$$F_Q(T, \mu_B) = F_Q(T, 0) + \sum_{n=2,4,\dots,8} \frac{F_n(T)\hat{\mu}_B^n}{n!}$$

sompute 
$$F_Q(\mu_B)$$









## Phase diagrams to different orders in Taylor expansion

• 8th order negligible up to  $T \leq 300 \text{ MeV for } n_S = 0 \text{ and}$   $T \leq 250 \text{ MeV for } \mu_S = 0$ 

• 1 sigma errorbars of 8th and 6th order touch at  $T \sim 400$  MeV for  $n_S = 0$  and  $T \sim 330$  MeV for  $\mu_S = 0$ 





### And, the CEP?



• deconfinement width increases in  $\mu_R$ 

• no sign of CEP up to these  $\mu_R$  values





- Go on with Taylor up to order...? Which order?
- The truncation error in  $\mu_R$  is uncontrolled. We can't really know if at  $\mu_R = 400$  MeV we should stop at 8th order, or at 10th, or 12th: it depends only on the available statistics
  - In a canonical formulation that would be controlled
  - Baryon number *B* is fixed,  $\mu_B$  is computed
  - Several attempts in the past by various collaborations: arXiv:0507020, 0602024, 0906.1088,...
  - Hope to have some new results for that by Quark Matter 2025!!

### What next?









## **Backup slides**



## Reweighting for staggered fermions

Difference between between the full responsion



• Difference between between the full reweighted result and the 8th-order Taylor





- We are interested in the deconfinement transition
- Order parameter: Polyakov loop  $\mathbf{P} \sim e^{-F_Q/T}$
- Problem: scheme-dependent
- $P^{\text{ren}} \sim c_P P^{\text{bare}}$ , where  $c_P$  depends on the scheme
- $F_Q = -T \log P \sim F_Q^{bare} c_F \rightarrow c_F$  depends on the scheme, but the inflection point does not
- Better way to find deconfinement temperature  $T_c$ : peak of static quark entropy  $S_Q = -\frac{\partial F_Q(T)}{\partial T}$ first used in arXiv:1603.06637, first used by this collaboration in 2405.12320





## Lattice setup for 2405.12320

- tree-level Symanzik improved gauge action
- $N_f = 2 + 1 + 1$  staggered fermions with 4stout smearing
- Details in Phys. Rev., D92(11):114505, 2015
- simulations at imaginary  $\mu_{\mathbf{R}} \rightarrow$  extrapolations to real values
- For  $N_s = 32, 40, 48$  simulations also 4, 5, 6, 6.5, 7
- strangeness neutrality setting:  $< N_S > = 0$

$$h = 1000 \text{ at } \text{Im} \frac{\mu_{\text{B}}}{T} \frac{\pi}{8} = 0, 3,$$



$$L = a N_s$$

•  $N_s = 20, 24, 28,$ 32, 40, 48, 64  $(\mu_{R} = 0)$ 







## Statistics for 2410.06216

| T  [MeV] | eta    | $m_l$      | $m_s$     | # configs |
|----------|--------|------------|-----------|-----------|
| 110      | 0.5236 | 0.00432111 | 0.1193920 | 410816    |
| 115      | 0.5406 | 0.00409845 | 0.1132400 | 1036373   |
| 120      | 0.5560 | 0.00390982 | 0.1080280 | 1080141   |
| 125      | 0.5700 | 0.00374705 | 0.1035310 | 1500967   |
| 130      | 0.5829 | 0.00360381 | 0.0995733 | 1887321   |
| 135      | 0.5947 | 0.00347548 | 0.0960274 | 1216195   |
| 140      | 0.6056 | 0.00335869 | 0.0928007 | 1912628   |
| 145      | 0.6158 | 0.00325107 | 0.0898270 | 1383987   |
| 150      | 0.6252 | 0.00315088 | 0.0870590 | 1338744   |
| 155      | 0.6341 | 0.00305689 | 0.0844619 | 1005178   |
| 160      | 0.6425 | 0.00296817 | 0.0820105 | 2215412   |
| 165      | 0.6504 | 0.00288403 | 0.0796857 | 1596043   |
| 170      | 0.6579 | 0.00280394 | 0.0774727 | 595253    |
| 175      | 0.6651 | 0.00272748 | 0.0753604 | 1131649   |
| 180      | 0.6719 | 0.00265434 | 0.0733394 | 1240884   |
| 185      | 0.6785 | 0.00258424 | 0.0714026 | 436002    |
| 190      | 0.6848 | 0.00251696 | 0.0695436 | 317895    |
| 195      | 0.6909 | 0.00245231 | 0.0677573 | 361870    |
| 200      | 0.6968 | 0.00239013 | 0.0660393 | 323968    |
| 205      | 0.7025 | 0.00233028 | 0.0643856 | 158703    |
| 210      | 0.7080 | 0.00227263 | 0.0627928 | 260064    |





