External and Dynamic Gauge Fields in Strong-Field QED -SIGN25

Óscar Amaro¹

Co-authors: Marija Vranic¹ João Pinto Barros² Marina Marinkovic²

GoLP / Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico, Lisbon, Portugal

² Institute for Theoretical Physics, High Performance Computational Physics, ETH Zürich, Switzerland

Acknowledgments

Collaborations with ETHZ (João Pinto Barros, Marina Marinkovic).

and Portuguese Science Foundation (FCT) Grants No. CEECIND/01906/2018, PTDC/FIS-PLA/ 3800/2021, and UI/BD/153735/2022.

Simulation results obtained at the Accelerates cluster (IST), and local desktop.

This work was supported by the European Research Council (ERC-2015-AdG Grant No. 695088)

Introduction

Extreme Plasma Physics, intense lasers, and the path to SFQED

Regimes of plasma dynamics

Electron-positron density and field strength, back-reaction on fields

Kinetic, \mathbb{Z}_n and axial-gauge approaches

First comparisons

Conclusions and Future directions

Particle-scattering, SFQED-cascades

Extreme Plasma Physics, intense lasers, and the path to SFQED

Extreme astrophysical objects

Pulsars

- Black Holes

Gamma-Ray bursts

(Image: © ESO/L. Calçada)

OSIRIS framework

- Massively Parallel, Fully Relativistic Particle-in-Cell Code
- Parallel scalability to 2 M cores
- Explicit SSE / AVX / QPX / Xeon Phi / CUDA support
- Extended physics/simulation models **QED and particle merging**

Open-access model

- 40+ research groups worldwide are using OSIRIS
- 300+ publications in leading scientific journals
- Large developer and user community
- Detailed documentation and sample inputs files available

Using OSIRIS 4.0

- The code can be used freely by research institutions after signing an MoU
- Find out more at:
- http://epp.tecnico.ulisboa.pt/osiris

Ricardo Fonseca: ricardo.fonseca@tecnico.ulisboa.pt

(classical) High Performance Computing

* Figure credit Jack Wells, Kate Clark, Supercomputer usage for different fields (INCITE 2019)

(classical) High Performance Computing

* Figure credit Jack Wells, Kate Clark, Supercomputer usage for different fields (INCITE 2019)

(classical) High Performance Computing

* Figure credit Jack Wells, Kate Clark, Supercomputer usage for different fields (INCITE 2019)

(classical) High Performance Computing

* Figure credit Jack Wells, Kate Clark, Supercomputer usage for different fields (INCITE 2019)

Electron beam - laser collision: setup and experiment

Electron beam - laser collision: setup and experiment

* OA, MV, PPCF 66 045006 (2024), [†] M Mirzaie, OA, MV, et al, Nature Photonics (2024)

Electron beam - laser collision: setup and experiment

* OA, MV, PPCF 66 045006 (2024), [†] M Mirzaie, OA, MV, et al, Nature Photonics (2024)

Intense lasers: Maxwell's equations and Nonlinear QED

Linear Maxwell's *

* Costa et al, PRA 99, 012323 (2019), Nguyen 2402.12156 (2024), [†] Grismayer NJP 2021

Euler-Heisenberg effective Lagrangian [†]

Intense lasers: Maxwell's equations and Nonlinear QED

Linear Maxwell's *

* Costa et al, PRA 99, 012323 (2019), Nguyen 2402.12156 (2024), [†] Grismayer NJP 2021

Euler-Heisenberg effective Lagrangian [†]

No implemented algorithm for self-consistent nonlinear dynamics of plasma + EM fields yet!

Intense lasers + plasmas: regimes of Strong-Field Plasma dynamics

Back-reaction, screening, collective modes, quantum spin statistics

Low-density approximations

* Engel PRA 2019, [†] Hebenstreit PRD 2008, [‡] Kasper PhysLetB 2016

Scattering $E < E_c^{\dagger}$

- Initial state is not the vacuum/Ground-State, but a particle beam (relativistic fermions or photons)
- Light-front coordinates, momentum/Fock-space
- Sequence of laser pulses
- Usually limited pair production \rightarrow no significant backreaction on strong EM field
- Asymptotic free-particle states well defined
- More closely connected to experimental setups

* Hidalgo PRD 2024, [†] Kasper PhysLetB 2016, [‡] Grismayer PoP 2016

Scattering $E < E_c^{\dagger}$

- Initial state is not the vacuum/Ground-State, but a particle beam (relativistic fermions or photons)
- Light-front coordinates, momentum/Fock-space
- Sequence of laser pulses
- Usually limited pair production \rightarrow no significant backreaction on strong EM field
- Asymptotic free-particle states well defined
- More closely connected to experimental setups

* Hidalgo PRD 2024, [†] Kasper PhysLetB 2016, [‡] Grismayer PoP 2016

Scattering $E < E_c^{\dagger}$

- Initial state is not the vacuum/Ground-State, but a particle beam (relativistic fermions or photons)
- Light-front coordinates, momentum/Fock-space
- Sequence of laser pulses
- Usually limited pair production \rightarrow no significant backreaction on strong EM field
- Asymptotic free-particle states well defined
- More closely connected to experimental setups

* Hidalgo PRD 2024, [†] Kasper PhysLetB 2016, [‡] Grismayer PoP 2016

Schwinger mechanism $E \sim E_c^*$

- Initial state is the vacuum of the theory
- Usually simulation in real coordinate space
- Background strong electric field (can be made localized and space/time-dependent)
- Electrical current feedback from pairs leads to damping and oscillation of electric field
- Quantum kinetic approach well studied

Scattering $E < E_c^{\dagger}$

- Initial state is not the vacuum/Ground-State, but a particle beam (relativistic fermions or photons)
- Light-front coordinates, momentum/Fock-space
- Sequence of laser pulses
- Usually limited pair production \rightarrow no significant backreaction on strong EM field
- Asymptotic free-particle states well defined
- More closely connected to experimental setups

* Hidalgo PRD 2024, [†] Kasper PhysLetB 2016, [‡] Grismayer PoP 2016

Schwinger mechanism $E \sim E_c^*$

- Initial state is the vacuum of the theory
- Usually simulation in real coordinate space
- Background strong electric field (can be made localized and space/time-dependent)
- Electrical current feedback from pairs leads to damping and oscillation of electric field
- Quantum kinetic approach well studied

Fokker-Planck equation for the energy distribution:

* OA, MV, L Gamiz, arXiv.2411.17517 (2024)

 $\frac{\partial f}{\partial t}(t,\gamma) = \frac{\partial}{\partial \gamma} \left[S(\chi) f \right] + \frac{1}{2} \frac{\partial^2}{\partial \gamma^2} \left[R(\chi,\gamma) f \right]$

Radiation Reaction of electrons in a strong field - kinetic approach

Fokker-Planck equation for the energy distribution:

Encoding particle distribution in quantum circuit. Evolution of variational parameters through VarQITE.

 $\frac{\partial f}{\partial t}(t,\gamma) = \frac{\partial}{\partial \gamma} \left[S(\chi) f \right] + \frac{1}{2} \frac{\partial^2}{\partial \gamma^2} \left[R(\chi,\gamma) f \right]$

Fokker-Planck equation for the energy distribution:

Encoding particle distribution in quantum circuit. Evolution of variational parameters through VarQITE.

* OA, MV, L Gamiz, arXiv.2411.17517 (2024)

 $\frac{\partial f}{\partial t}(t,\gamma) = \frac{\partial}{\partial \gamma} \left[S(\chi) f \right] + \frac{1}{2} \frac{\partial^2}{\partial \gamma^2} \left[R(\chi,\gamma) f \right]$

Fokker-Planck equation for the energy distribution:

Encoding particle distribution in quantum circuit. Evolution of variational parameters through VarQITE.

* OA, MV, L Gamiz, arXiv.2411.17517 (2024)

Types of Electromagnetic fields in classical/quantum simulations

Separation of scales leads to different approaches to the EM fields:

- Dynamical gauge: self-consistent, generated EM fields E_{dyn} —
 - Are updated through quantum Hamiltonian or Maxwell's eqs on PIC grid.

Types of Electromagnetic fields in classical/quantum simulations

Separation of scales leads to different approaches to the EM fields:

- Dynamical gauge: self-consistent, generated EM fields E_{dyn}
 - Are updated through quantum Hamiltonian or Maxwell's eqs on PIC grid.

- External/background semiclassical fields E_{ext}
 - Imposed on fermions (eg. strong laser fields)

Types of Electromagnetic fields in classical/quantum simulations

Separation of scales leads to different approaches to the EM fields:

- Dynamical gauge: self-consistent, generated EM fields E_{dyn}
 - Are updated through quantum Hamiltonian or Maxwell's eqs on PIC grid.

- External/background semiclassical fields E_{ext}
 - Imposed on fermions (eg. strong laser fields)

- High-energy photons that cannot be resolved on the grid E_{ν}
 - Can be taken as macroparticles in PIC or using momentum Fock states

* Hidalgo PRD 2024, [†] Kasper PhysLetB 2016, [‡] Grismayer PoP 2016

 $e^{-}(p_{-})$

Model metrics:

- Vacuum persistence probability: $P_{\text{vac}} \equiv \mathscr{G}(t) = \langle GS | \psi(t) \rangle$ Electric charge: $Q \equiv \frac{1}{N} \sum_{n=1}^{N-1} \langle Z_n \rangle_t$

Average gauge dynamical electric field: $\mathscr{E}(t) \equiv \frac{g}{2N}$

Chiral condensate:
$$\langle \bar{\psi}\psi \rangle \equiv \Sigma(t) = \frac{g}{2wN} \sum_{i=0}^{n-1} (-1)$$

respect to half of the spin chain

$$\frac{1}{\sqrt{2}} \left(\sum_{i=0}^{n-1} \sum_{k=0}^{i} \langle Z_k \rangle + (-1)^k \right) + g q$$
$$)^i \langle Z_k \rangle$$

Logarithmic negativity (a metric for entanglement-entropy): $E_N \equiv \log_2(||\rho^{\Gamma_A}||_1)$, partial transpose with

\mathbb{Z}_3 Approach to QED₁₊₁

Gauss' law in 1+1D allows integrating out either fermions or electric field. Certain states of fields and particles are not physical, but Hilbert space still grows exponentially, Observables/metrics: fermion density, electric field, entanglement, etc. Strong-Field QED will require in general resolving both low and high energy state dynamics.

>	
-	
-	
>	
1	
>	
-	
>	
1>	
>	
>	
1	
-	
>	
-	
>	

H_X - axial-gauge external-field Hamiltonian

Axial-gauge Hamiltonian (local/short-range, no
$$J = g^2 a/2$$
 coupling)
$$H_X = \frac{1}{2a} \sum_{i=0}^{n-2} \left(\sigma_+(i)\sigma_-(i+1) + \sigma_+(i+1)\sigma_-(i) \right) (\delta_{i,0}\sqrt{2} + (1-\delta_{i,0})) + \frac{1}{2} \sum_{i=0}^{n-1} \left((-1)^i m + eEai)\sigma_3(i) + \frac{1}{2} \sum_{i=0}^{n-1} \left((-1)^i m + eEai\right) \sigma_3(i) + \frac{1}{2} \sum_{i=0}^{n-1} \left((-1)^i m + eEai)\sigma_3(i) + \frac{1}{2} \sum_{i=0}^{n-1} \left((-1)^i m + eEai\right) \sigma_3(i) + \frac{1}{2} \sum_{i=0}^{n-1} \left((-1)^i m + eEai\right) \sigma_3(i) + \frac{1}{2} \sum_{i=0}^{n-1} \left((-1)^i m + eEai\right) \sigma_3(i) + \frac{1}{2} \sum_{i=0}^{n-1} \left((-1)^i m + eEai\right) \sigma_3(i) + \frac{1}{2} \sum_{i=0}^{n-1} \left((-1)^i m + eEai\right) \sigma_3(i) + \frac{1}{2} \sum_{i=0}^{n-1} \left((-1)^i m + eEai\right) \sigma_3(i) + \frac{1}{2} \sum_{i=0}^{n-1} \left((-1)^i m + eEai\right) \sigma_3(i) + \frac{1}{2} \sum_{i=0}^{n-1} \left((-1)^i m + eEai\right) \sigma_3(i) + \frac{1}{2} \sum_{i=0}^{n-1} \left((-1)^i m + eEai\right) \sigma_3(i) + \frac{1}{2} \sum_{i=0}^{n-1} \left((-1)^i m + eEai\right) \sigma_3(i) + \frac{1}{2} \sum_{i=0}^{n-1} \left((-1)^i m + eEai\right) \sigma_3(i) + \frac{1}{2} \sum_{i=0}^{n-1} \left((-1)^i m + eEai\right) \sigma_3(i) + \frac{1}{2} \sum_{i=0}^{n-1} \left((-1)^i m + eEai\right) \sigma_3(i) + \frac{1}{2} \sum_{i=0}^{n-1} \left((-1)^i m + eEai\right) \sigma_3(i) + \frac{1}{2} \sum_{i=0}^{n-1} \left((-1)^i m + eEai\right) \sigma_3(i) + \frac{1}{2} \sum_{i=0}^{n-1} \left((-1)^i m + eEai\right) \sigma_3(i) + \frac{1}{2} \sum_{i=0}^{n-1} \left((-1)^i m + eEai\right) \sigma_3(i) + \frac{1}{2} \sum_{i=0}^{n-1} \left((-1)^i m + eEai\right) \sigma_3(i) + \frac{1}{2} \sum_{i=0}^{n-1} \left((-1)^i m + eEai\right) \sigma_3(i) + \frac{1}{2} \sum_{i=0}^{n-1} \left((-1)^i m + eEai\right) \sigma_3(i) + \frac{1}{2} \sum_{i=0}^{n-1} \left((-1)^i m + eEai\right) \sigma_3(i) + \frac{1}{2} \sum_{i=0}^{n-1} \left((-1)^i m + eEai\right) \sigma_3(i) + \frac{1}{2} \sum_{i=0}^{n-1} \left((-1)^i m + eEai\right) \sigma_3(i) + \frac{1}{2} \sum_{i=0}^{n-1} \left((-1)^i m + eEai\right) \sigma_3(i) + \frac{1}{2} \sum_{i=0}^{n-1} \left((-1)^i m + eEai\right) \sigma_3(i) + \frac{1}{2} \sum_{i=0}^{n-1} \left((-1)^i m + eEai\right) \sigma_3(i) + \frac{1}{2} \sum_{i=0}^{n-1} \left((-1)^i m + eEai\right) \sigma_3(i) + \frac{1}{2} \sum_{i=0}^{n-1} \left((-1)^i m + eEai\right) \sigma_3(i) + \frac{1}{2} \sum_{i=0}^{n$$

- Parameters: a lattice spacing, no connection between spin n-2 and n-1. _
- Axial gauge $A_0 = -E|z|$ to enforce uniform electric field

Free bare-mass Hamiltonian $H_X^{0,m} = \frac{1}{2} \sum_{i=1}^{n-1} (-1)^i m \sigma_3(i)$

- Grounds-State (GS) is then $|10(10)..1\rangle$
- The GS of the free Hamiltonian with kinetic term can be prepared with VQE

Ó. Amaro | SIGN25 Workshop | Jan 24th, 2025 | 15

 \mathcal{Z}

Schwinger pair-production rate: w vs Γ

Rates (external *eE*-field x charge, mass m) *

Vacuum persistence probability $P_{\text{vac}}^{1+1} = \exp(-w^{1-1})$

Pair production density rate $\dot{\rho} = d\rho/dt = \Gamma_{1+1}$

⁺¹*Lt*),
$$w^{1+1}(m, eE) = -\frac{eE}{2\pi} \log\left(1 - \exp\left(-\frac{\pi m^2}{eE}\right)\right)$$

$$(m, eE) = \frac{eE}{2\pi} \exp\left(-\frac{\pi m^2}{eE}\right)$$

Schwinger pair-production rate: w vs Γ

Rates (external *eE*-field x charge, mass m) *

For early-time evolution:

- Starting with the vacuum/GS, the probability of finding the system in this state decreases exponentially
- The increase of electric charge is approximately linear

Extracting the Schwinger pair production rate from simulation

- -
- Convergence study with increasing number of qubits n

Fitting $P_{\text{vac}}(t) \sim c^{te} \exp(-w(m', eE) \times an \times t)$ and $\rho \sim c^{te} + t \times \Gamma(m', eE)$ to extract the rates (w, Γ)

Extracting the Schwinger pair production rate from simulation

- Convergence study with increasing number of qubits n

- What other physical observables can we retrieve from \mathbb{Z}_n and axial H_X that are useful to SFQED + plasmas?

Fitting $P_{vac}(t) \sim c^{te} \exp(-w(m', eE) \times an \times t)$ and $\rho \sim c^{te} + t \times \Gamma(m', eE)$ to extract the rates (w, Γ)

- Towards full 2/3 + 1 D simulations of Schwinger pair production
 - Higher dimensionality/volume simulations, different topologies, back-reaction on fields

- Towards full 2/3 + 1 D simulations of Schwinger pair production
 - Higher dimensionality/volume simulations, different topologies, back-reaction on fields
- First-principles simulations of SFQED scattering
 - Scaling of higher-loop / higher-multiplicity processes -
 - Can we inform classical kinetic/fluid simulations with more accurate rates? —
 - Quantum states of light vs classical background fields —

- Towards full 2/3 + 1 D simulations of Schwinger pair production
 - Higher dimensionality/volume simulations, different topologies, back-reaction on fields _
- First-principles simulations of SFQED scattering
 - Scaling of higher-loop / higher-multiplicity processes -
 - Can we inform classical kinetic/fluid simulations with more accurate rates? —
 - Quantum states of light vs classical background fields —
- Quantum simulation of SFQED cascades
 - Connection with real world physics: laser experiments and astrophysical models -

- Towards full 2/3 + 1 D simulations of Schwinger pair production

Higher dimensionality/volume simulations, different topologies, back-reaction on fields -

- First-principles simulations of SFQED scattering

- Scaling of higher-loop / higher-multiplicity processes -
- Can we inform classical kinetic/fluid simulations with more accurate rates? -
- Quantum states of light vs classical background fields -

- Quantum simulation of SFQED cascades

Connection with real world physics: laser experiments and astrophysical models -

Self-consistent focused, ultra-short laser field structure

mechanism (laser depletion and screening)

Open question: is there a maximum achievable laser power, bounded by the Schwinger pair production

SFQED in the landscape of Quantum Many Body simulations

* adapted from JP Barros, MK Marinkovic, Quantum Simulations of Gauge Theories, HS2023 ETHZ

SFQED in the landscape of Quantum Many Body simulations

* adapted from JP Barros, MK Marinkovic, Quantum Simulations of Gauge Theories, HS2023 ETHZ

Conclusions

Why Strong-Field QED is worth studying

Highly non-perturbative, collective plasma dynamics. First-principles simulations lacking

Conclusions

Why Strong-Field QED is worth studying

Highly non-perturbative, collective plasma dynamics. First-principles simulations lacking

First comparisons between QED_{1+1} models towards SFQED regime

Need further studies to understand the role of back-reaction on the background fields What are the minimal (quantum) computational resources to study quantum plasma physics

Conclusions

Why Strong-Field QED is worth studying

Highly non-perturbative, collective plasma dynamics. First-principles simulations lacking

First comparisons between QED_{1+1} models towards SFQED regime

Need further studies to understand the role of back-reaction on the background fields What are the minimal (quantum) computational resources to study quantum plasma physics

A Living Review of Quantum Computing for Plasma Physics

Living review:

Github webpage: <u>https://qppqlivingreview.github.io/review/</u> arXiv pre-print: <u>https://arxiv.org/abs/2302.00001</u>

Quantum Computing promises accelerated simulation of certain classes of problems, in particular in plasma physics. The goal of this document is to provide a comprehensive list of citations for those developing and applying these approaches to experimental or theoretical analyses. As a *living document, it will be updated as often as possible to incorporate* the latest developments. Suggestions are most welcome.

download review

EXTRA SLIDES

PIC loop and the standard Monte Carlo routine

PIC loop and the standard Monte Carlo routine

PIC loop and the standard Monte Carlo routine

