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Introduction



Introduction

Many ways for defining contours that reduce the sign problem:

Thimbles, flows, explicit expressions, machine learning.

Given N real integration variables, complexify the variables and

look for a real N dim submanifold of the complex N dim space.

The condition Im(S) = C defines a 2N − 1 dim object.

A lot of freedom in choosing a contour for N > 1.
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Strategy – a Simple and Practical Approach

Requirements from an integration contour

� Uniform deformations:

Easy to implement and effective in reducing the phase.

� Im(Seff ) ≈ C :

Exponential time is acceptable for small enough exponents.

� Low computational cost:

In particular in the evaluation of the Jacobian.

We examine the method for the Bose Gas with chemical potential.

The mean phase factor,
〈
e i Im(Seff )

〉
Re(Seff )

, is used as a measure for

the severity of the sign problem.
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Contour Deformations for the

d-Dimensional Bose Gas with µ ̸= 0



The Bose Gas at Finite Chemical Potential

Consider Bose gas with µ: A theory of a single complex scalar.

Define α ≡ 1
2d+m2 . In lattice units the theory can be written as:

S =
1

λα2

∑
r⃗

(
Φ∗
r⃗ Φ⃗r +(Φ∗

r⃗ Φ⃗r )
2−α

d−1∑
ν=0

(
Φ∗
r⃗ Φ⃗r+ν̂e

−µδν,0+Φ∗
r⃗+ν̂Φ⃗r e

µδν,0
))

For an undeformed contour there is a sign problem:

Im(S) =
2 sinhµ

λα

∑
r⃗

Im
(
Φ∗
r⃗Φr⃗+0̂

)
Complexify the (complex) field as:

Φr⃗ → Φr⃗ = ϕr⃗ + iψr⃗ , Φ∗
r⃗ → Φ̄r⃗ ≡ ϕ∗r⃗ + iψ∗

r⃗

Φ̄r⃗ is the complex conjugate of Φr⃗ only for the undeformed

contour: ψr⃗ = 0.
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Defining a Contour

We look for a deformed contour by specifying ψr⃗ = ψr⃗ {ϕs⃗}.

For a general deformation:

Im(S) =
2

λα2
Re

∑
r⃗

(
ϕ∗r⃗ψr⃗

(
1 + 2|ϕr⃗ |2 − 2|ψr⃗ |2

)
− α coshµ

(
ϕ∗r⃗ψr⃗+0̂ + ψr⃗ϕ

∗
r⃗+0̂

)
− α

d−1∑
ν=1

(
ϕ∗r⃗ψr⃗+ν̂ + ψr⃗ϕ

∗
r⃗+ν̂

)
−iα sinhµϕ∗r⃗ϕr⃗+0̂ + i sinhµαψ∗

r⃗ ψr⃗+0̂

)
A very simple solution for Im(S) = 0 exists: ψr⃗ = ±iϕr⃗ .

So are we done here?

No. Now either Φr⃗ = 0 or Φ̄r⃗ = 0. Hence S = 0, not only Im(S).

Wrong boundary conditions.
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Defining a Contour Using an Expansion

The term inducing the sign problem is proportional to the

small parameter 0 ≤ α ≤ 1
2d .

Hence, we define ψr⃗ =
∞∑
n=1

αnψ
(n)
r⃗ .

Expanding Im(S) to lowest order in α gives:

Re

(∑
r⃗

ϕ∗r⃗

((
1 + 2|ϕr⃗ |2

)
ψ
(1)
r⃗ − i sinhµϕr⃗+0̂

))
= 0

Many continuous solutions exist. A simple choice:

ψ
(1)
r⃗ = i sinhµ

ϕr⃗+0̂

1 + 2|ϕr⃗ |2
+ iϕr⃗ fr⃗

with fr⃗ an arbitrary real function of the fields.
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Generalizing the Contour

The obtained expressions is certainly useful for small values of αeµ.

How to improve it?

� Go to the next order in the α expansion.

Certainly helps but an expansion is necessarily limited.

� Generalize to an ansatz:

ψ
(1)
r⃗ = i sinhµ

a1ϕr⃗ + a2ϕr⃗+0̂

1 + b1 |ϕr⃗ |2 + b2 |ϕr⃗+0̂|2

a1 gives a particular choice of fr⃗ .

b2 > 0 regularizes the contour.

� Do both, go to higher order and generalize.

The expansion essentially guides us towards ansätze that

could be useful also for large expansion parameter.
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The Jacobian for the First Order Contours for d = 1

ψr depends only on ϕr and ϕr+1. Hence, the Jacobian has the form

J = det


A1 B1 0 0 . . .

0 A2 B2 0 . . .
...

. . .
. . .

. . . 0

0 . . . 0 AL−1 BL−1

BL 0 . . . 0 AL


Ar and Br are known 2× 2 matrices.

Without the BL the Jacobian would have been given by a product

of L determinants of size 2× 2. Thus, the update of the Jacobian

would have been O(1) per site, or O(L) per sweep.

Otherwise, it seems that the cost is O(L4) per sweep.
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Evaluation of the Jacobian

The Jacobian matrix is not upper diagonal but it’s not too bad.

Performing elementary block row operations leads to:

J = det
(
1− (−1)LA−1

1 B1 · ... · A−1
L BL

)
det (A1) · ... · det (AL)

A product of determinants of 2× 2 matrices.

But the first determinant itself contains a product of 2L matrices.

The cost per sweep is O(L2).

Using cyclicity this can be made into O(L), but then we have to

invert the matrices A−1
r Br , but the Br might not be invertible.

But going beyond first order for d > 1 would not be possible.

Need another approach.
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Another Approach for Fast Evaluation of the Jacobian

Need fast algorithm for more general contours, for arbitrary d .

Revise the expressions for the evaluation of the “last lattice point”.

Several such options were considered.

Remaining problems

� Now the expressions are not uniform.

Why is it a problem?

� As µ is increased the problem becomes more significant.

� For d = 1 this concerns a single lattice point.

For general d there are Ld−1 such points.

This is enough to cause a significant sign problem.
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On the Bright Side

Not all is bad with this approach.

The problem is with the mean phase factor for a given lattice size.

It is important to examine what happens as we change this size.

The mean phase factor as a function of lattice size for λ = 1,

m = 1, with µ = 1 (left) and µ = 1.5 (right) on a logarithmic scale
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The Importance of Being Uniform



Undeformed Contour

The phase can get contributions from local terms (point r) and

from nearest neighbour terms (point r + 1
2).

RMS of the phase factor for the undeformed contour

d = 1, L = 16, λ = 1, m = 1 (α = 1
3 , µ = 1)

Only “half-integer points” contribute, as can be seen from S .

For uncorrelated contributions, the RMS of Im(S) would have been

about
√
16 times the value at a single point.

In fact, it is significantly lower. 13/21



Deformed Contour

Finding a good contour is as much about inducing proper

correlations among the various contributions, as it is about

reducing individual contributions.

RMS of the phase factor for the first order ansatz contour

d = 1, L = 16, λ = 1, m = 1 (α = 1
3), µ = 1, no special point

Now integer points also contribute and contributions are larger.

Still Im(S) is much reduced.
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Correlations of Different Contributions to Im(S)

Correlations among contributions to Im(S) from integer and

half-integer lattice sites

d = 1, L = 16, λ = 1, m = 1, µ = 1, no special point

Special treatment of a single point breaks this picture.

In d > 1 the situation is even worse. 15/21



Uniform Contours with Fast

Evaluation of the Jacobian



Rewrite the action

Uniformity does not mean identical deformations at all sites.

Define parity on sites that alternates with the time coordinate.

Two natural options:

� Time coordinate parity: |r⃗ | = |(r0, . . . , rd−1)| ≡ (−1)r0

� Chessboard parity: |r⃗ | = |(r0, . . . , rd−1)| ≡ (−1)r0+r1+...+rd−1

Declare that on even sites the fields are not deformed.

Rewrite the condition for canceling the lowest order term of Im(S):

Re
∑
r⃗ odd

ϕ∗r⃗

(
ψ
(1)
r⃗

(
1 + 2|ϕr⃗ |2

)
− i sinhµ

(
ϕr⃗+0̂ − ϕr⃗−0̂

))
A simple solution exists (for r⃗ odd):

ψ
(1)
r⃗ = i sinhµ

ϕr⃗+0̂ − ϕr⃗−0̂

1 + 2|ϕr⃗ |2
+ iϕr⃗ fr⃗
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Ansätze and the Jacobian

Generalizing to an ansatz is straighforward:

ψr⃗ = iα sinhµ
a1(ϕr⃗+0̂ − ϕr⃗−0̂)

1 + b1|ϕr⃗ |2 + b2|ϕr⃗+0̂ − ϕr⃗−0̂|2

For the evaluation of the Jacobian we put the even lattice points

after the odd ones.

Upper triangular Jacobian matrix. Thus:

J =
∏
r⃗ odd

Jr⃗

Jr⃗ = 1−
2ib1 Re

(
ϕ∗r⃗ψr⃗

)
1 + b1|ϕr⃗ |2 + b2|ϕr⃗+0̂ − ϕr⃗−0̂|2

At each site we have to evaluate a simple local expression.
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Comparing Contours

The mean phase factor as a function of µ for for different contours

d = 1, λ = 1, L = 8, m = 1
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Higher Order Ansätze

Plugging ψ(1) into the action we get for the second order:

Re

(∑
r⃗

ϕ∗r⃗ψ
(2)
r⃗

(
1 + 2|ϕr⃗ |2

)
− 2i sinhµ

∑
r⃗ odd

1

1 + 2|ϕr⃗ |2
·

·
(
coshµϕr⃗+0̂ϕ

∗
r⃗−0̂

+
d−1∑
ν=1

ϕr⃗+ν̂ϕ
∗
r⃗−ν̂

))
= 0

Second order terms at odd lattice sites are not enough.

Instead, we rewrite again, and choose ψr⃗ ̸= 0 only if r⃗ ≡4 0.

Need chessboard (quaternary) parity now.

ψ
(2)
r⃗ =

i sinh(2µ)

1 + 2|ϕr⃗ |2
( ϕr⃗+20̂

1 + 2|ϕr⃗+0̂|2
−

ϕr⃗−20̂

1 + 2|ϕr⃗−0̂|2
)

+
2i sinhµ

1 + 2|ϕr⃗ |2
d−1∑
ν=1

( ϕr⃗+2ν̂

1 + 2|ϕr⃗+ν̂ |2
− ϕr⃗−2ν̂

1 + 2|ϕr⃗−ν̂ |2
)
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Problems with the Jacobian Again

The obtained expression exactly works for second order but the

Jacobian Matrix is again not simple.

Modify the explicit expression to a similarly looking ansatz,

ψ
(2)
r⃗ =

i(
1 + b3|ϕr⃗ |2 + b4

∑d−1
ν=0 |ϕr⃗+2ν̂ − ϕr⃗−2ν̂ |2

)2 ·
·
(
a2 sinh(2µ)

(
ϕr⃗+20̂ − ϕr⃗−20̂

)
+ a3 sinhµ

d−1∑
ν=1

(
ϕr⃗+2ν̂ − ϕr⃗−2ν̂

))
More terms can be added to account for correlations between next

to nearest neighbours with odd parity.
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Summary



Summary

Contour deformation is a viable approach for the sign problem.

Address the source of the sign problem (nearest 0̂ neighbours).

An efficient computational method with a determinant that can be

evaluated with complexity O(V ) for arbitrary d .

Interpreting the expansion

The expansion is in powers of α = 1
2d+m2 :

� Expansion around infinite mass.

� Expansion around infinite d .

� Expansion in order of neighbours.
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THANK YOU
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Action Density as a Function of Lattice Size

The action density, ⟨S⟩
L , as a function of lattice size L

Various contours with special point for λ = 1, m = 1, µ = 1

Simple first order

Simple second order

First order ansatz

Second order ansatz
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Comparing Different Dimensions – Fixed α

Simple 1st order contours, 256 lattice sites, λ = 1

Fixed value of α = 1
9 (m = 1 for d = 4, m =

√
7 for d = 1)

The mean phase factor is larger for smaller d

Results depend also on the geometry
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Comparing Different Dimensions – Fixed m

Simple 1st order contours, 256 lattice sites, λ = 1

Fixed value of m = 1

The mean phase factor is smaller for smaller d
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